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1. Introduction

The rapid increase in the processing power of caerpin the past two decades and the emerging
availability of powerful computers in the cloud lggen rise to a new form of experimentation called
silico (literally in silicon, that is, doing the experiment entirely on a cotaguBadyal et al (2009), for
example, show how animal experiments\jvo) are being replaced by computer models — negsdru

that used to be tested on mice can now be testsahnputer models of mice.

This is more than just computer modeling and sitmda- there is data too. Wishart et al (2006)
describe Drugbank which is a massive data repgsitmntaining drug entries, protein sequences,
bioinformatics and cheminformatics entries, an#ldito other databases. Furthermore, Drugbank is
“open” — it is free and available to anyone at drargk.ca. Now the public can develop new drugs.

We envision similar resources — models, simulatiansl data — being available for conducting finahci
experimentsn silico. This paper is a nod in that direction. We shovekgmple the power and potential
of conducting financial simulations to test modelgotheses, and investment trading ideas. For
example, one question we have pondered is thichwkimore important for predicting financial
markets — theizeof a phenomenon (such as the correlation of gaéstrrs with future returns) or the

statistical significance®f the phenomenon? We show how we can answeqtfestion. We might
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wonder: is it possible to time switching betweea 8PDR sector funds (XLB, XLE, etc)? How much

dispersion in returns do we need for timing to vilovKe can answer those questions too.

One of the important tools of financial researchasktesting. Backtesting refers to the process of
testing investment strategies on past market dada ieffort to predict the strategy performance on

future data.

The problem with this approach is that there uguaii’t enough past data to make statistically
significant conclusions on the performance of theestment strategy in the past and that past market

data does not resemble closely enough what thesfutarket will look like.

This paper solves that problem by using simulattogenerate market data for testing purposes nibts
obvious at first how simulated data can be helfffutesting future markets but we show in two

examples how this can be done. Beyond these exarim@eossibilities are endless.

This is primarily an expository paper which expsagoncepts that are quite simple. So we omit formal
technicalities such as bootstrap, robustnesssstatli tests, and stress tests and leave out matiosm

The investing strategies used as examples aresasiyto apply.

The structure of this paper is as follows: we idtrce a list of problems that arise from using
backtesting on market data, we then show someegbithblems with market data itself (in particular
problems with the S&P 500 index), then we show heoavket noise manifests itself as disingenuous

backtesting results.

Then we introduce our simulator and describe soinits oapacities. Its main features are the abibty
model markets in various different ways. This inlgs algorithms for modeling and generating noise
(including heteroskedastic noise), algorithms fengyrating random walks of various kinds including
trending and mean-reverting walks, algorithms fidiag time variation to all our parameters (such as
simulation a market that switches between trendimfymean-reverting phases), algorithms for
incorporating the Capital Asset Pricing Model foodeling whole portfolios of stocks and Exchange
Trade Funds, and algorithms for detecting and geiimgy regime changes (such as switching between

volatile and calm markets). The simulator is a wiorgrogress and will be available in open source.



We show it in action in an example using movingrage strategies. We demonstrate the effect of noise
on the task of optimizing the moving average sgat&/e show how, even with centuries worth of
market data we still would not have enough dataptanize the trading rule due to the amount of @ois

in the stock market. We introduce a method foridgakith the noise — that of smoothing. Then we

show using simulations the effect of the smoothindhe future performance of the investment stgateg

The simulations allow us to optimize the smoothpagameter without “data mining bias” or
“overfitting” or any of the other problems with Bdesting. In the following section we show using
charts how the data mining bias introduced by kestkig manifests itself. We show in an extraordinar
chart how there is an inverse relationship betwesaktested returns and future actual returns thiero
words, the better the returns from the backtestwbrse the returns are in real life. This is ceut

the intuition of many traders and people who ddktesting.

Then we introduce a second simulation example tahaptimizing a portfolio of investment assets.
We show how simulation can help in choosing thenagitnumber of assets and how to time the
rebalancing of those assets. This time we use mumetnading rules as they are simpler to apply when
timing multiple assets. We give reasonably convig@vidence that the optimal number of assets to
hold is 11 even though we do not have enough datantaccurate backtests. It is interesting to tivae
for doing these calculations we conducted billiohmarket simulations. This kind of research would

not have been possible a decade ago.

Finally we end with a discussion of the drawbadkthe simulation method. The most significant
problem is that of ensuring that timesilico environment matches the vivo (real life) environment. As
the modeling and simulation technology evolves glaith computing power the matching will

improve just as it is improving in the biologicakatm.

This paper talks about algorithms suclamensional smoothing algorithms. More discussiarthe
algorithms and open source code to implement tisgonavided on the web page for this paper at
www. ddnum cont sof t war e/ si mul at or



2. Problems with Backtesting on Market Data

Backtestings the process of applying an investment strategyast market data in order to predict
future returns from that strategy. There are a remobproblems with the concept of backtesting. We
refer readers to the book Aronson (2007) for a gertescussion or to de Prado (2013) for the
mathematics of backtest overfitting.

In particular the fundamental problems of backtesthat are most relevant to this paper are:
1) market data has noise in it
2) markets are non-ergodic

Markets consist of long term trends swamped byesyahd one-off trends and “jump” events all of

which are swamped by noise. That gives rise to wioi$te problems.

(1) is a problem because noise is, by definitioypradictable and non-repeatable. To the extenthieat
investment strategy being tested latches onto rorggrediction (or incorporates it into an optimion)
the strategy will suffer in the future because aassnon-predictive. This problem has various names
such aglata mining biasfool’s gold overfitting snoopingfishing, data dredging, data torturingy
using the data twiceThe latter refers to the process of using patst heoptimize a strategy and then
using the same data to predict the future retdrhs. is mathematically unsound in the presenceotfen
in the data. For an entertaining paper title amdesmathematical theory see Bailey et al (2014) tiBlse
mathematics and financial charlatanism: the effettsacktest overfitting on out-of-sample

performance.” We will show some examples below.

(2) is a problem because backtesting assumeshihatarket in the future will in some sense resemble
the market in the past. Many mathematical proofinance start off “let {Xi} be a stationafyergodic
stock market.” Ergodicity of a sequence of datdésproperty in which every sequence or sample of
sufficient size is equally representative of theolgh The stock market is composed of secular regime
that will never be repeated (e.g. the emerging etaskom of the 90’s or the Global Financial Crislis
2008) as well as regimes that probably will be edpe but in varying durations and intensities (budl
and bear regimes). It is definitely not ergodic k$t@and Wenzelburger 2008) and we now show a

disconcerting recent example.

2 Stationary here means that the probability distidn of the market returns does not shift withetim



3. The S&P 500 — Trending or Mean Reverting?

We show below a chart of the S&P 500 as extrapdlasek to 1800 by Global Financial Data and
plotted on a log scale. The market appears to haga remarkably consistent over the last 200 years.
Indeed, this consistency is evident for the stoekkats of many other countries when charted ba6k 10
or 200 years (Credit Suisse 2014). But this coasst is an illusion and it has serious ramificasidor

backtesting investment strategies.
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Any backtesting strategy will, presumably, userti@st recent years of stockmarket data. Let us
consider the most recent 15 years — a popularpgened (especially for the development of Exchange

Traded Funds) — and compare it with previous &5 periods.

Let us consider, for example, the mean-revertingesrding tendencies of the S&P 500. We define the
variance ratio(VR) of a series of prices to be the ratio of kih@eriod return tk times the variance of
the 1-period return. The idea behind this is thiaémvreturns are uncorrelated over time, the numerat
and denominator should be the same. So the VR dieul..

But in a mean-reverting market the returns are tnegg correlated and the VR will be less than dne.

a trending market the returns will be positivelyretated and the VR will be greater than one. So we



can calculate the VR over various peridmd tell if the market is trending or mean-revegtover that

period.

Here is an example. The chart on the left shows#8ae 500 plotted on a log scale and colored by 15

year time intervals. The chart on the right shdwesvariance ratios for each 15 year time interval.
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Thex axis in the VR chart is days. We see, for exantpls, for the 1999 to 2013 time interval (in
yellow or the lowest line in the VR chart) that oWene periods of 1 to 100 days the VR is less than
so the market is mean-reverting over this time &aRor more than 100 days the VR is a little higher

about 0.86 — so the market is still mean-reveriangless so.

Compare this to the other 15 year time intervate VR values are much higher than one — indicating
trending markets. Mean-reversion strategies wonitkor these markets (except perhaps for sham ter
less than 30 day strategies in the 1984 to 199&etjar

The last 15 years appears to have been atypicalt Wihe value of a backtest that covers thisopéri
We suspect not much. Without ergodicity we cannakenany forward-looking predictions that we have

confidence in.

We didn’t need the VR to tell us that the last £ang has not been typical of previous years. Visual
inspection of the left hand chart tells us thate Tirarket appears to have become cyclic. Therdhege t

peaks and two troughs — jute points. In statistics a sample of size 5 is mirug® small as to be



almost worthless. Any strategy that gets closéése turning points — and it's easy to devise owdl—

produce spectacular returns in what is essentiadigleways market.

This is not typical of the market of the last 2@&&axs. We should be extremely wary of extrapolatirey
last 15 years forward to the next 15 years. Thatexjy is fraught with danger.

4. Timing, Noise, and Lag

A third problem with the way backtesting is typlgatarried out is:
3) Backtesting seeks to maximize returns instead timgging timing

Conventional model building and backtesting tresptimize timing by maximizing returns. The
distinction between optimizing returns and timisgsubtle. It may not appear to even be usefulelf w
can optimize timing then optimizing returns willrely follow. This is true to a certain extent bubaus

on optimizing returns has some flaws.

Market timing drives excess returns. But the obsgmxcess returns have extra included noise. The
formula is:

observed excess returns = excess returns from trtarkeg + noise

The right hand side might be expressed in engingeerms asignal + noise In stock markets the
signal is invariable swamped by the noise. It esdltection of the signal that we are trying tarojae
but all we can optimize through backtesting is algnnoise. We are optimizing the wrong quantity

when we try to optimize returns.

In stock markets the noise is particularly capusiolt can be “fat tailed,” can have large one-tjoraps

(or outliers), and may not even have a finite vag@ It can lead backtesting algorithms astray.

For example, the crash of 1987 was a single-dagtdkiat took 20% off the market. Any backtesting
strategy that includes 1987 could “accidentallydiavthat bad day and get an undeserved 20% boost in

its returns.



In an attempt to remove noise from returns an@¢ag on the signal we can “smooth” out the noise by
using the tendency for noise to cancel out if ayedaover multiple instances. A popular exampléés t

moving average.

But when those averages involve multiple time pive introduce lag into detection of the signalg L
means that we miss the optimal timing in practigetbis may be OK if the lag is not too long. Bt
long is too long? For a short-duration signal #igerihay be too long to catch the signal. Even long
duration signals if weak enough could require taecinaveraging to be useful.

Backtesting cannot really give us an indicationvbkther or not the lag is acceptable. It is too
uncontrolled an environment. We don’t know for sifit@ strategy failed or succeeded simply due to
chance. So we come to our fourth problem with bestkig:

4) Backtesting does not give us confidence intervals

A backtest is a sample of size one. A sample dfgiza does not allow any statistical statement of
confidence to be made. This is regardless of wiheétieemarket is ergodic or not. If the market alijua
was ergodic then we could divide the time peridd smaller periods (as we did with the variancejat

and get, under certain conditions, a small increasample size.

But there is so much volatility in daily returnsngpared to the size of even the largest signalgtthat

turns out that we need far more data than we dgtave. How do we know this? We used simulation.

5. Simulation as a Testing Strategy

We have avoided defining what we mean by “signatl &noise” in stock markets. This is because what
may be noise to one trader may be signal to andtoerexample a buy-and-hold long term investor
may be expecting an annualized return of 8% imiheket. For such an investor the daily fluctuations

of returns around that 8% constitutes noise.

But for a day trader who is only in the marketantiay the daily return fluctuations contain enough
signal to be profitable (presumably). So theredshsolute definition of market noise. But thisis

problem for simulation. For repeated simulations@ads what is different each time, signal is what



remains constant. Meucci (2009) calls the quesprfediction models the quest for market invariants

those phenomena that repeat themselves identtbatiyghout history. Anything else is noise.

Simulation is where we simulate a signal, simutatene noise, add the two together, and then backtest
the simulated data. We control what is signal ahdtvis noise and there is no ambiguity. Its chief
advantage is that we are in full control of the kear we know the signal and we know what part of

returns are signal and what part are noise. Wetpkayole of “Mr Market.”

We provide two full examples of this in the restlod paper. But a brief example for now will illcege
the principle. Suppose we want to test the usesslio¢ the seasonal Halloween Indicator as a signal

stay out of the market for six months of the y&éaybe staying out costs us more than we gain.

We test this by measuring the returns and vartgholi the in-season and out-of-season market dweer t
last, say, 15 years, and simulating a market vitisé parameters. By simulating ovenidlion years we
can make statements such as “with these parantle&kalloween indicator isn’'t profitable” or “to be
profitable the Halloween effect must tes big” or “to test the Halloween indicator if it ikis big

would require 300 years worth of data to be 95%ident that the effect is real.”

Backtesting in general consists of two elements:
) does the signal we are testing actually exist enntiarket?

i) is the signal to noise ratio large enough to alibevsignal, if it exists, to be exploited?

Simulation backtesting mainly addresses (ii) batls® useful for addressing (i). The iterative gichare
in using simulation is: (a) form a hypothesis abmumarket strategy, (b) gather parameters from the
market, (c) test it in the simulator then eitherbgak to (a) or (d) test it in the market. Theneaggrom

(a) again.

The advantages of simulation backtesting are many:
* we know the optimal strategy (we are Mr Market)
» our focus is on hypothesis testing and understaniti@ market rather than seeking returns
* it avoids using the data “twice”

e we can get an upper limit to the returns achievalille a given strategy in a market with given

noise



* we can get a feel for the current market (by minmglaspects of it)

* we can see if a market inefficiency is renderedf@ntive due to too much noise or lag
* we can do experiments

» it solves the sequential parameter estimation pral{kee below for explanation)

* we can ask questions we wouldn't consider askirtiganmeal market

* we can optimize for the signal directly without igiit indirectly by optimizing returns
e we can measure how much noise a strategy fit (aadtdy the amount of overfitting)
e we can test and optimize different methods fomesting parameters

e it gives us an appreciation of noise and whichtatji@as are more resistant to it

* we can repeat the simulation process and get camd&lintervals for our estimates

The sequential parameter estimation problem iglaytone to solve using backtesting on real data. |
concerns the case where we have, say, 15 years ofataita and have some constant market parameter

that we want to estimate. An example might be dimg Irun mean volatility of the market.

At the beginning of the 15 years we know nothingutlihe parameter and have to estimate it witle litt
data. Then by the end of the 15 years we know @nanpeter quite well. We want to estimate the return
going forward so are tempted to ask “suppose wekhe parameter to be this value at the beginning o
the 15 years, what would our returns have beenWesnun a second backtest with the estimate fram th
first.

The problem here is that our first backtestierestimatedur future returns because it didn’t have a
good estimate of the parameter. And the secondéstoverestimateaur future returns because it

used the same data twice (once to calculate tlaer and once to calculate the returns).

Dividing our sample into two 7 year periods reduttesbias but means our estimate of future returns

comes from only half as much data so loses prdiliitia It doesn’t solve the problem.
Simulation solves this problem because we can sitedhe whole 15 years and exactly measure the

bias. Then we can test strategies for reducingaybe averaging the over and under estimates will

work).

10



6. The Simulator

We have built a market simulator that can be usdddt a wide range of hypotheses about the markets
The simulator has two aspects to it — one of fitfimrameters to the market and one of simulating

markets with the fitted or any given parameters.

We have used the programming language MATLAB fergimulator but intend to convert it into the
free programming language R (R Development Corenl@812) and to make the code available for
free on our web sitemww. ddnum com sof t war e/ si mul at or . R has far more features for fitting

and simulating statistical models than MATLAB.

Features in the simulator to date include the tgtii simulate:
* noise— from Gaussian distributions, fat-tailed disttibns such as Studentdistributions with
given skewness and kurtosis (the Pearson famihyg) heteroskedasticity — using GARCH

processes.

e random processes- such as Brownian (random walk with parametect s$ drift and
volatility), Brownian Bridge (random walk with bo#nds constrained — useful to ensure a given
return), Heston Model (allows correlation betweetums and volatility), Ornstein—Uhlenbeck

(useful for mean-reverting processes), and framtadesses.

* time-varying parameters— parameters can be varied according to simpiewsaves, sums of
sine waves, asymmetrical sine waves (useful folicalanarkets where bull phases are longer
than bear phases), sawtooths, random switching/@eet, say, bulls and bears), autoregressive

processes, random walks, and time-varying Hursbespt.

* alpha and beta parameters- for simulating mutually correlated multiple assaccording to
the Capital Asset Pricing Model (CAPM), also we bane time varying alpha and beta values.

* regime change- detection and modeling through use of HiddenKdamModels

The Hurst exponent (H) is a parameter of a fragmtatess and has the useful property that H < 0.5
means the process is mean-reverting, H = 0.5as@om walk, and H > 0.5 is a trending process. We

11



can vary the Hurst exponent continuously (using@the time-varying features) to simulate a market

that moves between mean-reverting and trendingeshas

The idea behind having so many different simulateatures is that we can try them all in a sensjtiv

analysis to see how an investment strategy is tdbusarious market properties and conditions.

7. Example 1 — Optimizing Moving Average CrossoveRules

In this section we emulate what a backtester (meos@lgorithm) might do to devise a trading rude t

trade a given market.

The basic backtesting strategy is to devise a ayply it to past market returns to optimize thie ru
parameters, then use those optimal parameterade the market going forward. The logic behind this
strategy seems clear: our best guess, in the absémny extra information, for trading in the freus
what worked best in the past. Since markets cditkle we may not have confidence that this ruleyma

actually be the best going forward but it is difilicto see how we could choose anything better.

As an example consider the much-beloved Moving AgerCrossover Rule. It is a simplistic
momentum strategy and serves as a standard itiostfar quantitative techniques. We don’t advocate
the strategy but note that it can be quite profigabas an example the MA(200, 50) strategy wheze t
200 and 50 refer to days is known in the indussryhe “golden cross” and apparently works well for

many markets. So we use it as an example in tipisrpa

This strategy says to calculate a short period ifca) moving average and a long period (caihjt
moving average. Then trade long if the former edsdbe latter else stay out of the market. We
abbreviate this to the MA({ n) rule. The strategy works well when a time seeeters a period of

strong trend and then slowly reverses the trend.

The problem that we deal with is how to estimagelibst values fan andn. In particular, how do we
estimate it when the only data that we have is etaturns for the last, say, 15 years.

12



An obvious procedure is to look at what valuesnandn worked best in the past and use those going
forward. It doesn’t seem possible to improve on.tBarely the best estimate, without any extra data

predictions about the future, of what will workthre future is what worked in the past.

The flaw in this view is that it fails to deal withe presence of noise in our estimatesiaindn.

We now show how noise manifests itself in backigstind how we can remove some of it to improve

our estimation of the best parameters for tradmitpe future. We start with our simulator.

8. Return Surfaces for Moving Average Crossover Rels

Using the simulator we generate sequences of efarrthe S&P 500 for time periods of 15, 30, 60,

and 480 years. We then apply backtesting to eagplesee and look at the results.

If our simulation was simply a random walk with stemt drift then the returns would not be time-
varying and we would not be able to time the marketsimulate time-varying returns we generated a
sum of two sine waves — a major wave with period5#0 days and a minor wave of period 300 days
for the bull markets and a major wave of period 889s and a minor wave of period 250 days for the
bear markets. We chose these numbers becauseetimyble the S&P 500 market of the last 15 years.
We chose round numbers and did not attempt to atdwyrfit the market because an accurate fit is not

required for this exercise (we know this from doagensitivity analysis).

For each simulated sequence we try every possiBlgnyin) rule formfrom 1 to 400 and from 1 to
150 (note thah cannot exceerh) and plot the resulting returns in a heat diagraneach pair of charts
below the results are shown in the left hand cidre point of maximum return is shown with a white

cross — this is expected to be the trading rulettteabacktester would declare optimal.

In the first chart we see the white cross at MA@E), We ignore the return at that point becauge it

irrelevant for this discussion. What we are interdsn is where the white crosses lie.
Because we set the parameters for this marketrirobeias Mr Market we know that the actual optimal

MA trading rule is MA(134, 1). The 15 years of dataduced an estimate of (80, 48) which is a long

way from the optimum. So 15 years of data is noy weuch for this kind of backtesting.
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15 Year Return Surface 15 Year Return Surface (smoothed)
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Now try 30 years. The 30 year return surface iswelhe optimum is at (120, 25) so we are getting
closer. How about 60 years?

30 Year Return Surface 30 Year Return Surface (smoothed)
Maximum at (120, 25) Maximum at (131, 6)

140 140

120 120
100 100
80 80
60 60

40 40
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The 60 year surface below shows a maximum at (IJ140 we are getting closer to the true value.
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But after 480 years we are still not close. We eltbg figure of 480 years for other reasons andvilve

discuss that below.
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9. Reducing the Noise — Smoothing

We notice that the surfaces, if pictured as 3-edlgj are “rough” and it is tempting to smooth théis.
not obvious if smoothing will work though and itist possible to test using real market data.
Simulation is our only hope — we show here thaitilitwork. Also it allows us to determine the optin
amount of smoothing which turns out to be highantiwve intuitively expected.

We consider three different smoothing algorithmssimoothing the surfaces. There are more available

but three is enough to illustrate the principlesirned.

(1) The first we calbmooth2awnhich is a simple two-dimensional local averagihgeplaces each pixel
with the average pixel value of all pixels withimiatances of that pixel. It is quick and easy to
understand but since each pixel is replaced witavanage of nearby pixels it tends to flatten tbaks
and troughs of the surface. Also it only workstiwo-dimensional surfaces whereas we would prefer

something more general.

(2) The next algorithm we cadimoothrwhich is described in Garcia (2010). This fitsisplcurves in
multiple dimensions and attempts to preserve curedh the surfaces. It is a robust smoothing that
minimizes the influence of extreme data and wodksviore than two dimensions. The smoothing

parametes determines the amount of curvature allowed irsgilanes and thus the degree of smoothing.

(3) The third algorithm we callsrmvwhich is a multivariate kernel smoothing regressibhis places a
small hill (or kernel) at each data point and agjdshe hills to create the final surface. The tégpha is
a standard one in mathematics and we used a 2(G8nmantation of the Nadaraya-Watson (1964)

kernel regression provided by Yi Cao of Cranfieldiversity.

In the right hand chart of each of the pair of fegiabove we show the effect of smoothing using
smooth2aand s = 30. The other smoothing methods give tethat look similar. It is evident that
smoothing before finding the maximum finds a maximeloser to the optimal point than not smoothing.
Smoothing appears to improve the estimates of ptienal MA rule. We prove this in the next section.

One remark that we would like to make here befooging on is that the optimal rule has= 1. This is

a bit unintuitive — we would have expected themjptin to be higher to reduce variability in calculating

16



the short term moving average. Sunely 2 would greatly reduce the variability and imyedhe trading

rule. But no — the optimal rule has= 1.
And the really interesting part of this findingtiet whenever we have determined the optimal Vviaue
n in other types of simulations and in sensitivitabysis we have always found the optimal valueeto b

1. So we speculate that the optimal valuenfr always 1. So much for the golden cross winese50.

The investigation of this phenomenon is a topicfibure papers.

10. The Backtesting Results Chart

This chart is a key chart of the paper and desexrveseful examination.
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Along the horizontak axis is the value of the smoothing paramet@r= 0 corresponds to no smoothing,
assincreases the amount of smoothing increases)thifbe colors in the chart are for the three differe
smoothing methods. Fer= 0 there is no smoothing so all three lines cogwéo the same point. The
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actual smoothing methods used are not as impatatite fact that the results differ when using

different methods.

To aid in judging differences 95% confidence in&svare drawn (using shading) for each curve in the
chart. The intervals for the methksrmvare wider than for the others becaksemvrequires copious

amounts of CPU time so we were unable to run ag/rsiamulations as for the other methods.

The verticaly axis shows the mean annualized return of the wamoethods. The gray horizontal line is
the expected return of the optimal moving averagesover strategy. This return is 13.39% and result
from the optimal MA strategy which is the MA(134,rile. We know this number exactly because we

are Mr Market.

We chose a time period of 15 years and simulateerakethousand instances of our market. For each
simulation we calculated the MA empirical returmfaae as a backtester would do when backtesting the
15 years. Then we picked the MA empirical tradinig that maximized the return on that empirical
surface. This is what a backtester would do wherosimg a MA trading rule to trade going forward.

In addition, for each empirical surface we smoottiedsurface using a specified smoothing method and
amount of smoothing and calculated new “smoothed” trading rules, areeach value of from 1 to
about 70. Thus each surface gave us an “unsmoottaatihg rule and 69 smoothed rules.

For these 70 trading rules we calculated the aetnglirical past returns and the future expectagrmst
(which we know because we are Mr Market). We did tiver several thousand simulations and plotted

them (and confidence intervals) in the chart fahegalue ofs.

All values above the gray line are the actual pagpirical returns, all values below the line are th

expected future returns. An example may make thexrer.

Consider, for example, the case where0 on the left. We see that the mean past retashabout 17%.
This means that on average a backtester who b&e#t&S years worth of data in this market and used

the best MA trading rule for that period would hawmeasured the past return for that rule to be 17%.

This is clearly an overoptimistic estimate of figumarket returns because as we already know, #te be

possible trading rule has an expected future regtiomly 13.39%. That is a well-known peril of
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backtesting, that if it includes an optimizatioastt will overestimate future return (Aronson, Z00

calls this overestimate “data-mining bias” or “fegjold”).

Just how much does it overestimate future retufie?three lines below the gray line show expected

future returns and we can see thatsferO expected future returns are about 12.2%.

The chart shows another bias — the “small sampées. T he described backtesting methodology on
average produced trading rules that are less thamal since 12.2% is less than the optimal retfrn
13.39%.

This is where smoothing comes in. By applying vasiamounts of smoothing to the empirical return
surfaces we generate from backtesting we get kesttanates of the optimal trading rule and better

estimates of future return (less data-mining bias).

The former can be seen in the lower part of thetchass increases the future expected returns increase.
Up to a point where we reach the optimal amousinodothing. It looks like the optimal smoothing
method issmoothrand the optimal value afis 65 which produces an expected future returt2of %.

This is better than the unsmoothed future returb2o?2%.

The data-mining bias is the difference betweeruttieger and lower lines of the same color (the
difference between past returns and future retuilrie¥y decreases with increassgut starts increasing

again with excessive smoothing.

A lesson from this chart is that optimizing pastiras does not necessarily optimize future returhss
IS unintuitive to a certain extent. We show it mixmatically in the next chart. Usisgalues in the
range of 0 to 40 (the chart starts getting mes®y D) we plot for the three smoothing methodd pas
mean returns versus future expected returns. Tagareship is clearly negative.

Negative means that the higher the past returadptier the future return¥his, more than anything

else in this paper, shows the dangers of backtgdfiyou try to maximize backtested returns you run

the risk of reducing your actual future returns.
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Annualized Returns, Past Versus Future from Backtesting
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Another way of looking at the success of backtgssrno calculate the probability of getting “near
enough” to the optimal rule. If we define near ggioto mean getting within 1% of the best possible
return from a moving average crossover strategy e get the next chart. This shows that zero
smoothing gives us a probability of 0.1 of gettahgse. But by more smoothing we can get as high as

50% chance of getting close enough.

Probability of getting within 1% of Optimum Return
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11. Example 2 — AAIl Portfolio Optimization

The American Association of Individual InvestorsAW) maintains a selection of investment strategies
(that they call screens) applied to the U.S stoakkets. They provide monthly return figures for 83
strategies and indexes from 1998 to now (theoleattarns assuming no trading costs). The strasegie
have been garnered from books and academic papeera listed on their web site at

http://www.aaii.com/stock-screens.

The strategies can be classified into nine stylMéslue Value with Price MomentunGrowth, Growth
with Price MomentunGrowth & Value Growth & Value with Price Momentyrgarnings Estimates
Specialty andindexes Each strategy consists of a collection of stafkbie same style so behaves

similarly to an Exchange Traded Fund.

Due to the groupings by similarity within style wespect that the strategies will have time varying
performances depending on which style is in vogube market at any one time. If true then we may

be able to time the strategies and switch betwleem to enhance our returns.

We ask: is the dispersion in returns large enoughtle noise small enough to allow us to perform
market timing? Backtesting is unlikely to answaes ttjuestion as we only have 192 monthly returns

since 1998 and this is woefully inadequate for ssisg statistical significance.

Plus there is another problem — two of the strateghePiotroskiones) are outliers in their extremely
high performance (see the charts below). The effetttis is similar to the effect of the 1987 crash
heavily rewards investment algorithms that may gede=dly stumble upon the high performing outliers.
We are tempted to remove the outliers to produt®ig robust assessment of any investment
algorithms. But we also want to make sure thaiefé are any outliers then our algorithms will tatc

onto them. So we cannot remove them.

The only way to resolve this conflict and to sallae problem with lack of data is to use simulation.

We constructed the simulation by measuring theaalpid beta of the 82 strategies against tfe(8@
S&P 500 index) according to the standard CAPM mote¢ alphas and betas vary with time so we
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needed to use a time-varying regression modeldifhgackage in R (Petris et el 2009) provides
estimation for this model. Then we fitted sine @svo the varying alphas and betas. We also fitesl
curves to the S&P 500 and this process gave ugahdll the parameters required for a complete

ergodic market simulation.

We plot below the mean-variance diagram for alA23I strategies and indexes. Although they are a
bit of a mess we leave in the labels of the stragefpr the benefit of readers who may be famiéh
them. It should be noted that the two strategidb thie highest returns are tR@troskistrategies. The

S&P 500 index is shown as a blue circle. The effitifrontier is shown as the blue curve.

AAIll Mean—Variance—Efficient Frontier
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The next chart shows the equity curves for the Adhtegies and indexes. The S&P 500 is shown in
thick red (lower thick line). The thick green (uppkne is the M(4, 4) algorithm which will be

explained in the next section.
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12. Timing the AAII Strategies

We now consider timing algorithms for the AAIl d&gies. The simplest might be the momentum
algorithm. For multiple assets this is an improvetrever the moving average crossover rule becduse i

allows us to rank assets relative to each other.

Momentum rules have been used by practitionerddoades but it was only recently that they were
recognized by academics — Jegadeesh and TitmaB)(1@6mentum is the tendency of

investments to persist in their performance whegioed or bad. This persistence implies predictigbili
— past returns predict future returns. One quessiowhat is the optimal past period (or lookbaekipd)

which best predicts future returns?

When considering multiple assets there are twostgfif@nomentum: cross sectional momentum (CSM)
and longitudinal momentum (LM). CSM (also calleddifier terms such as relative strength) is the
tendency for relative performance among assetsisigt — so the best performing assets tends tainem
the best performing. Thus a CSM algorithm mighestvthe most money in the top performers of the

group of assets.
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LM (also called by other terms such as time sariementum or absolute momentum) is the tendency
for a single asset to persist in its performaneéher positive or negative. So an LM algorithm htig
invest the most money in assets that have pogasgeéreturns or returns greater than a threshold.

The combined momentum algorithm (also called bgiotarms such as dual momentum or constrained
relative momentum) invests the most money in ashatshave the highest CSM provided that they have
positive or high LM.

This gives rise to some questions: what are thiengptutoff thresholds (the values for which we
exclude an asset from the portfolio) for the twonmemtums and what are the optimal lookback periods
for them when applied to the AAIl strategies? Ahgaat is the optimal number of assets to hold?

This is a five parameter optimization problem. Atpiattributed to John von Neumann is “with four
parameters | can fit an elephant, and with fivarl make him wiggle his trunk,” (Dyson 2004). Figtin
five parameters with just 192 observations is frawgth danger. We have no choice but to resort to

simulation.

For expository purposes we consider just thre@ede parameters: the optimal lookback periods and
number of assets to hold. A momentum strategy @8V lookback period af and LM lookback
period ofmis labeled M, m). If the momentum rules find no assets to investé stay out of the

market and, for simplicity, assume a cash returneod.

The next chart shows the results of a M(4, 4) stpatvith 10 assets. We cherry-picked these paramete
because they produce a good return which sugdegtsnomentum may work here. But is it a
significantly better return or just due to luck Riotroski)? Are these parameters optimal or can we find

better ones?

The chart shows the AAIIl strategies on a mean-uagaliagram. The S&P 500 is the blue circle. The
blue frontier is for the 83 assets including T-8illhe red for omitting T-Bills. The red circlegdhe
tangency portfolios which give the highest Sharp&d®. The two labeled magenta circles are thelequa
weighted strategy (EQWT) which equally weightssalategies and rebalances each month and M(4, 4)

is the momentum algorithm with 4 month lookbackd egbalancing each month into the top 10 assets.
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The yellow ellipse is the 95% confidence intervaltbe combined results of 1000 monkeys investing at
random each month into 10 assets. Any algorithrmftiis outside the yellow area we can say with 95%

confidence is different from random.

AAIl Mean-Variance—Efficient Frontier
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We note that equal weighting produces less vdiatifian the monkeys — this is due to the monkeys
holding only 10 assets whereas EQWT holds 82 (ll$). It is also higher than the mean monkey but
this may be due to chance or it could be due tortbsthly rebalancing benefiting from some mean

reversion in the prices.

The M(4, 4) algorithm greatly boosts the returnerdzQWT at the cost of a somewhat lesser boost in
volatility. It is significantly different from thenonkeys but this isn’t useful information whenanees
to optimizing the algorithm. What we really wane @onfidence ellipses for the N(m) algorithms but

these are not possible with so little data. Thishgre simulation comes in.
For this example we focus on Sharpe Ratio — wedclmalk at any metric such as return or volatility o

maximum drawdown. We simulated 15,000 instanceleRAIll strategies as described above. For

each instance we calculated the Sharpe Ratio @Ryxtch combination af andm from 1 to 24 and
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each number of assets from 1 to 40. This produ8gsl@ parameter combinations so we ended up

calculating about 66 billion returns and 346 milliSharpe Ratios. This took a whole day.

We calculated the mean of all the SRs for eachnpetexr combination. Each mean was of 15,000
observations and this was enough to give us theeendl digits of precision in the means — enough to
regard the means as exact and to be able to igaanpling error. This meant that we could calcullate

optimal strategy exactly. We now look at the result

The maximum Sharpe Ratio obtained was 1.25 for M233and 11 assets. By itself this figure isn’t
very useful. Let’s look, for example, at how thdiojum SR varies with the number of assets.

Optimal Actual M(n, m) Sharpe Ratio versus Number of Assets Optimal Simulated M(n, m) Sharpe Ratio versus Number of Assets
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The chart on the left (the green upper line) shthesactual empirical backtested optimal SRs foheac
number of assets (up to 40). The chart on the ggbtvs the exact results for the simulation (omyta
25). We see a steep rise followed by a period lative stability in the exact results. We view ta#
hand chart in this light and we postulate that ebhenigh the actual optimum occurs at 9 assetsdlais
noisy estimate and perhaps a little riskily tocseldo the steep drop off to the left. So we suritiiae
the best value to use going forward is in the 115@ange. We pick the value 11 since it lookslstab

around that value and the simulation has its optinati 11.
The simulation has not provided us with a defigtiuinique answer to the optimum size of the AAIl

portfolio but it did provide us with enough insigbtbe suspicious of the backtested optimum of® an

let us settle for a “more reasonable” 11.
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The backtested SRs are mostly around the valuelafiereas the exact simulated SRs are around 1.2.
We cannot say where this difference comes frommaig be due to inaccuracies in the parameters
chosen for the simulation and also due to ovarft{data mining bias) in the estimation of the imatin
andm parameters. So we wonder what would happen ifsed the optimah andm values from the

simulation for the actual empirical AAIl data. ThlaBould remove some data mining bias.

We get the orange line in the chart on the left.&fuly did this for curiosity — there is no guarantbat
the optimal values from the simulation should bemal for the AAIl data going forward. But it still
gives a rough idea of the amount of data mining Hiat may be present in the AAIl backtest. And it
demonstrates some of the types of testing we can siensitivity analysis where we test how robust t

findings are to changes in the parameters useithéosimulation.

What of the optimah andm values themselves? Can we learn anything abouot tiem the simulation.

The answer is “definitely.”

The AAII data for each number of asset values gusea surface where we varyandm each from 1 to
25 and plot the resulting Sharpe Ratio. We showpsesrof these surfaces below for number of assets 1
5, and 25 in the left hand chart of each pair. V8e ahow on the right the corresponding charts ftioen

simulation.
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We see the same tendencies in both series of ckartsmall numbers of assets the optimum seems to
ben =mwhereas for larger numbers the optimum movesddaver right corner. This might seem
reasonable — when we have to pick out more assetsawe to look at more data to be able to

distinguish them relatively. This is certainly @itoto investigate further.
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In the meantime, both charts tell us the same staryen = m. But they differ on the optimal sizes rof
andm. The actual empirical AAIl data likes small valueabout 5 or 6 months — and the simulations
like larger values — around 24 months. We wondey.Whaybe the actual data is dominated by the
Piotroski effect which encourages short term trading. Mayieesimulation doesn’t match the AAIl data

well enough. More on this matching problem in tleatrsection.

Having determined the effectiveness of momentuateggies we now ask — can we improve on them?
Comparing returns over a lookback period is annaidy noisy process — returns have a huge amount
of noise in them. Perhaps we can smooth the retiging regression or the Kalman Filter before doing
the comparison. Wouldrabustregression be even better? Should we include gtiaderms in the
regression (Li-Wen and Hsin-Yi, 2013 say so)? Mawleecan use the residuals from a regression (see
Blitz et al 2011 for a discussion of residual motnem). du Plessis (2013) splits our cross sectiandl
longitudinal momentums into six different varietigisree for each type) which gives six single [86s

combined algorithms to test. More strategies abonrtle literature.

Indeed, some of these strategies do improve thiddxsted performance on the actual AAll data. But is
the performance genuine? Is this an extreme exaofiglata mining? Only simulation can remove the

noise and reveal the true winner.

13. The Problem with Simulation

There is an old parable about a drunk who hadhigdteys in the night and is searching for themeund
a streetlight. A policeman helps him search budradtfew minutes to no avail he asks the drunleiish
sure he lost them there, and the drunk repliesthad he lost them in the park. The policeman agkg
he is searching there, and the drunk replies, fhwshere the light is.” This is called the stragt

effect (Freedman 2010).

A similar effect applies here. We seek the solutma market problem by leaving the market, cregéin

new problem by simulation, and seeking the anshexet
This is the weakness of the simulation method. arisver in the simulation may not be the answer in
the market. If the optimal smoothing parameterGsmthe simulation is the optimal value in the kedr

going to be 40?
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We suggest no, not exactly. The simulated answaotiso be taken definitively even though it miglet
calculated to 10 decimal digits. Buistindicative. Prior to the simulations we had intwaty used the
parameter value 6 for methsthooth2aThat valued seemed to give appealing visual shasot

But since doing the simulations we have switchedsiag the value 40. That seems by eye to smooth
out too many of the nice peaks and troughs. Howewetrust the simulations more than we trust our
untrained eyes. We don’t expect to be around fotrer 500 years to find out if we were right to i
But 40 is evidence-based and our value of 6 waSo'teven though the evidence is not definitive we

feel that instead of being totally in the dark fiulations shed useful light on the problem.

To some extent we have replaced one challenget etinasufficient data — with another challenge —
that of modeling a market. The data problem cabedixed with time — we can only collect new data a
the rate of 12 months’ worth every year but we nesduries worth, not years. The modeling problem
Is being solved at an exponential rate — computd@rep is still increasing exponentially (Moore’s Law
andData Sciences a brand new exponentially growing evolutiorStétisticsstarted over just the last
few years to handle the vast quantities of datainény available from space and from the global
internet. New algorithms in this field are beingpshed every week. Most are implemented in code

that is open source.

The best is yet to come.
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