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1. Introduction 

 

The rapid increase in the processing power of computers in the past two decades and the emerging 

availability of powerful computers in the cloud has given rise to a new form of experimentation called in 

silico (literally in silicon, that is, doing the experiment entirely on a computer). Badyal et al (2009), for 

example, show how animal experiments (in vivo) are being replaced by computer models  –  new drugs 

that used to be tested on mice can now be tested in computer models of mice.  

 

This is more than just computer modeling and simulation – there is data too. Wishart et al (2006) 

describe Drugbank which is a massive data repository containing drug entries, protein sequences, 

bioinformatics and cheminformatics entries, and links to other databases. Furthermore, Drugbank is 

“open” – it is free and available to anyone at drugbank.ca. Now the public can develop new drugs. 

 

We envision similar resources – models, simulations, and data – being available for conducting financial 

experiments in silico. This paper is a nod in that direction. We show by example the power and potential 

of conducting financial simulations to test models, hypotheses, and investment trading ideas. For 

example, one question we have pondered is this: which is more important for predicting financial 

markets – the size of a phenomenon (such as the correlation of past returns with future returns) or the 

statistical significance of the phenomenon? We show how we can answer that question. We might 
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wonder: is it possible to time switching between the SPDR sector funds (XLB, XLE, etc)? How much 

dispersion in returns do we need for timing to work? We can answer those questions too. 

 

One of the important tools of financial research is backtesting. Backtesting refers to the process of 

testing investment strategies on past market data in an effort to predict the strategy performance on 

future data.  

 

The problem with this approach is that there usually isn’t enough past data to make statistically 

significant conclusions on the performance of the investment strategy in the past and that past market 

data does not resemble closely enough what the future market will look like.  

 

This paper solves that problem by using simulation to generate market data for testing purposes. It is not 

obvious at first how simulated data can be helpful for testing future markets but we show in two 

examples how this can be done. Beyond these examples the possibilities are endless. 

 

This is primarily an expository paper which explains concepts that are quite simple. So we omit formal 

technicalities such as bootstrap, robustness, statistical tests, and stress tests and leave out mathematics. 

The investing strategies used as examples are very easy to apply. 

 

The structure of this paper is as follows: we introduce a list of problems that arise from using 

backtesting on market data, we then show some of the problems with market data itself (in particular 

problems with the S&P 500 index), then we show how market noise manifests itself as disingenuous 

backtesting results. 

 

Then we introduce our simulator and describe some of its capacities. Its main features are the ability to 

model markets in various different ways. This includes algorithms for modeling and generating noise 

(including heteroskedastic noise), algorithms for generating random walks of various kinds including 

trending and mean-reverting walks, algorithms for adding time variation to all our parameters (such as 

simulation a market that switches between trending and mean-reverting phases), algorithms for 

incorporating the Capital Asset Pricing Model for modeling whole portfolios of stocks and Exchange 

Trade Funds, and algorithms for detecting and generating regime changes (such as switching between 

volatile and calm markets). The simulator is a work in progress and will be available in open source. 
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We show it in action in an example using moving average strategies. We demonstrate the effect of noise 

on the task of optimizing the moving average strategy. We show how, even with centuries worth of 

market data we still would not have enough data to optimize the trading rule due to the amount of noise 

in the stock market. We introduce a method for dealing with the noise – that of smoothing. Then we 

show using simulations the effect of the smoothing on the future performance of the investment strategy.  

 

The simulations allow us to optimize the smoothing parameter without “data mining bias” or 

“overfitting” or any of the other problems with backtesting. In the following section we show using 

charts how the data mining bias introduced by backtesting manifests itself. We show in an extraordinary 

chart how there is an inverse relationship between backtested returns and future actual returns – in other 

words, the better the returns from the backtest, the worse the returns are in real life. This is counter to 

the intuition of many traders and people who do backtesting. 

 

Then we introduce a second simulation example – that of optimizing a portfolio of investment assets. 

We show how simulation can help in choosing the optimal number of assets and how to time the 

rebalancing of those assets. This time we use momentum trading rules as they are simpler to apply when 

timing multiple assets. We give reasonably convincing evidence that the optimal number of assets to 

hold is 11 even though we do not have enough data to run accurate backtests. It is interesting to note that 

for doing these calculations we conducted billions of market simulations. This kind of research would 

not have been possible a decade ago. 

 

Finally we end with a discussion of the drawbacks of the simulation method. The most significant 

problem is that of ensuring that the in silico environment matches the in vivo (real life) environment. As 

the modeling and simulation technology evolves along with computing power the matching will 

improve just as it is improving in the biological realm. 

 

This paper talks about algorithms such as n-dimensional smoothing algorithms. More discussion on the 

algorithms and open source code to implement them is provided on the web page for this paper at 

www.ddnum.com/software/simulator 
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2. Problems with Backtesting on Market Data 

 

Backtesting is the process of applying an investment strategy to past market data in order to predict 

future returns from that strategy. There are a number of problems with the concept of backtesting. We 

refer readers to the book Aronson (2007) for a general discussion or to de Prado (2013) for the 

mathematics of backtest overfitting. 

 

In particular the fundamental problems of backtesting that are most relevant to this paper are: 

1) market data has noise in it 

2) markets are non-ergodic 

 

Markets consist of long term trends swamped by cycles and one-off trends and “jump” events all of 

which are swamped by noise. That gives rise to most of the problems. 

 

(1) is a problem because noise is, by definition, unpredictable and non-repeatable. To the extent that the 

investment strategy being tested latches onto noise for prediction (or incorporates it into an optimization) 

the strategy will suffer in the future because noise is non-predictive. This problem has various names 

such as data mining bias, fool’s gold, overfitting, snooping, fishing, data dredging, data torturing, or 

using the data twice. The latter refers to the process of using past data to optimize a strategy and then 

using the same data to predict the future returns. This is mathematically unsound in the presence of noise 

in the data. For an entertaining paper title and some mathematical theory see Bailey et al (2014) “Pseudo 

mathematics and financial charlatanism: the effects of backtest overfitting on out-of-sample 

performance.” We will show some examples below. 

 

(2) is a problem because backtesting assumes that the market in the future will in some sense resemble 

the market in the past. Many mathematical proofs in finance start off “let {Xi} be a stationary2 ergodic 

stock market.” Ergodicity of a sequence of data is the property in which every sequence or sample of 

sufficient size is equally representative of the whole. The stock market is composed of secular regimes 

that will never be repeated (e.g. the emerging market boom of the 90’s or the Global Financial Crisis of 

2008) as well as regimes that probably will be repeated but in varying durations and intensities (e.g. bull 

and bear regimes). It is definitely not ergodic (Horst and Wenzelburger 2008) and we now show a 

disconcerting recent example. 
                                                 
2 Stationary here means that the probability distribution of the market returns does not shift with time 
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3. The S&P 500 – Trending or Mean Reverting? 

 

We show below a chart of the S&P 500 as extrapolated back to 1800 by Global Financial Data and 

plotted on a log scale. The market appears to have been remarkably consistent over the last 200 years. 

Indeed, this consistency is evident for the stock markets of many other countries when charted back 100 

or 200 years (Credit Suisse 2014). But this consistency is an illusion and it has serious ramifications for 

backtesting investment strategies. 
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Any backtesting strategy will, presumably, use the most recent years of stockmarket data. Let us 

consider the most recent 15 years – a popular time period (especially for the development of Exchange 

Traded Funds)  – and compare it with previous 15 year periods. 

 

Let us consider, for example, the mean-reverting or trending tendencies of the S&P 500. We define the 

variance ratio (VR) of a series of prices to be the ratio of the k-period return to k times the variance of 

the 1-period return. The idea behind this is that when returns are uncorrelated over time, the numerator 

and denominator should be the same. So the VR should be 1. 

 

But in a mean-reverting market the returns are negatively correlated and the VR will be less than one. In 

a trending market the returns will be positively correlated and the VR will be greater than one. So we 
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can calculate the VR over various periods k and tell if the market is trending or mean-reverting over that 

period. 

 

Here is an example. The chart on the left shows the S&P 500 plotted on a log scale and colored by 15 

year time intervals. The chart on the right shows the variance ratios for each 15 year time interval. 
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The x axis in the VR chart is days. We see, for example, that for the 1999 to 2013 time interval (in 

yellow or the lowest line in the VR chart) that over time periods of 1 to 100 days the VR is less than 0.8 

so the market is mean-reverting over this time frame. For more than 100 days the VR is a little higher – 

about 0.86 – so the market is still mean-reverting but less so. 

 

Compare this to the other 15 year time intervals. The VR values are much higher than one – indicating 

trending markets. Mean-reversion strategies won’t work for these markets (except perhaps for short term 

less than 30 day strategies in the 1984 to 1998 market). 

 

The last 15 years appears to have been atypical. What is the value of a backtest that covers this period? 

We suspect not much. Without ergodicity we cannot make any forward-looking predictions that we have 

confidence in. 

 

We didn’t need the VR to tell us that the last 15 years has not been typical of previous years. Visual 

inspection of the left hand chart tells us that. The market appears to have become cyclic. There are three 

peaks and two troughs – just five points. In statistics a sample of size 5 is minute – so small as to be 
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almost worthless. Any strategy that gets close to these turning points – and it’s easy to devise one – will 

produce spectacular returns in what is essentially a sideways market.  

 

This is not typical of the market of the last 200 years. We should be extremely wary of extrapolating the 

last 15 years forward to the next 15 years. That strategy is fraught with danger. 

 

4. Timing, Noise, and Lag 

 

A third problem with the way backtesting is typically carried out is: 

3) Backtesting seeks to maximize returns instead of optimizing timing 

 

Conventional model building and backtesting tries to optimize timing by maximizing returns. The 

distinction between optimizing returns and timing is subtle. It may not appear to even be useful. If we 

can optimize timing then optimizing returns will surely follow. This is true to a certain extent but a focus 

on optimizing returns has some flaws. 

 

Market timing drives excess returns. But the observed excess returns have extra included noise. The 

formula is: 

observed excess returns = excess returns from market timing + noise 

 

The right hand side might be expressed in engineering terms as signal + noise.  In stock markets the 

signal is invariable swamped by the noise. It is the detection of the signal that we are trying to optimize 

but all we can optimize through backtesting is signal + noise. We are optimizing the wrong quantity 

when we try to optimize returns. 

 

In stock markets the noise is particularly capricious. It can be “fat tailed,” can have large one-time jumps 

(or outliers), and may not even have a finite variance. It can lead backtesting algorithms astray.  

 

For example, the crash of 1987 was a single-day event that took 20% off the market. Any backtesting 

strategy that includes 1987 could “accidentally” avoid that bad day and get an undeserved 20% boost in 

its returns.  
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In an attempt to remove noise from returns and to focus on the signal we can “smooth” out the noise by 

using the tendency for noise to cancel out if averaged over multiple instances. A popular example is the 

moving average. 

 

But when those averages involve multiple time periods we introduce lag into detection of the signal. Lag 

means that we miss the optimal timing in practice but this may be OK if the lag is not too long. But how 

long is too long? For a short-duration signal the lag may be too long to catch the signal. Even long 

duration signals if weak enough could require too much averaging to be useful. 

 

Backtesting cannot really give us an indication of whether or not the lag is acceptable. It is too 

uncontrolled an environment. We don’t know for sure if a strategy failed or succeeded simply due to 

chance. So we come to our fourth problem with backtesting: 

4) Backtesting does not give us confidence intervals 

 

A backtest is a sample of size one. A sample of that size does not allow any statistical statement of 

confidence to be made. This is regardless of whether the market is ergodic or not. If the market actually 

was ergodic then we could divide the time period into smaller periods (as we did with the variance ratio) 

and get, under certain conditions, a small increase in sample size. 

 

But there is so much volatility in daily returns compared to the size of even the largest signals that it 

turns out that we need far more data than we actually have. How do we know this? We used simulation. 

 

5. Simulation as a Testing Strategy 

 

We have avoided defining what we mean by “signal” and “noise” in stock markets. This is because what 

may be noise to one trader may be signal to another. For example a buy-and-hold long term investor 

may be expecting an annualized return of 8% in the market. For such an investor the daily fluctuations 

of returns around that 8% constitutes noise.  

 

But for a day trader who is only in the market intra-day the daily return fluctuations contain enough 

signal to be profitable (presumably). So there is no absolute definition of market noise. But this is no 

problem for simulation. For repeated simulations noise is what is different each time, signal is what 



 9 

remains constant. Meucci (2009) calls the quest for prediction models the quest for market invariants – 

those phenomena that repeat themselves identically throughout history. Anything else is noise. 

 

Simulation is where we simulate a signal, simulate some noise, add the two together, and then backtest 

the simulated data. We control what is signal and what is noise and there is no ambiguity. Its chief 

advantage is that we are in full control of the market – we know the signal and we know what part of 

returns are signal and what part are noise. We play the role of “Mr Market.” 

 

We provide two full examples of this in the rest of the paper. But a brief example for now will illustrate 

the principle. Suppose we want to test the usefulness of the seasonal Halloween Indicator as a signal to 

stay out of the market for six months of the year. Maybe staying out costs us more than we gain. 

 

We test this by measuring the returns and variability of the in-season and out-of-season market over the 

last, say, 15 years, and simulating a market with those parameters. By simulating over a million years we 

can make statements such as “with these parameters the Halloween indicator isn’t profitable” or “to be 

profitable the Halloween effect must be this big” or “to test the Halloween indicator if it is this big 

would require 300 years worth of data to be 95% confident that the effect is real.” 

 

Backtesting in general consists of two elements: 

i) does the signal we are testing actually exist in the market? 

ii)  is the signal to noise ratio large enough to allow the signal, if it exists, to be exploited? 

 

Simulation backtesting mainly addresses (ii) but is also useful for addressing (i). The iterative procedure 

in using simulation is: (a) form a hypothesis about a market strategy, (b) gather parameters from the 

market, (c) test it in the simulator then either go back to (a) or (d) test it in the market. Then repeat from 

(a) again. 

 

The advantages of simulation backtesting are many: 

• we know the optimal strategy (we are Mr Market) 

• our focus is on hypothesis testing and understanding the market rather than seeking returns 

• it avoids using the data “twice” 

• we can get an upper limit to the returns achievable with a given strategy in a market with given 

noise 
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• we can get a feel for the current market (by mimicking aspects of it) 

• we can see if a market inefficiency is rendered ineffective due to too much noise or lag 

• we can do experiments 

• it solves the sequential parameter estimation problem (see below for explanation) 

• we can ask questions we wouldn't consider asking in the real market 

• we can optimize for the signal directly without doing it indirectly by optimizing returns 

• we can measure how much noise a strategy fit (and quantify the amount of overfitting) 

• we can test and optimize different methods for estimating parameters 

• it gives us an appreciation of noise and which strategies are more resistant to it  

• we can repeat the simulation process and get confidence intervals for our estimates 

 

The sequential parameter estimation problem is a tricky one to solve using backtesting on real data. It 

concerns the case where we have, say, 15 years worth of data and have some constant market parameter 

that we want to estimate. An example might be the long run mean volatility of the market. 

 

At the beginning of the 15 years we know nothing about the parameter and have to estimate it with little 

data. Then by the end of the 15 years we know the parameter quite well. We want to estimate the returns 

going forward so are tempted to ask “suppose we knew the parameter to be this value at the beginning of 

the 15 years, what would our returns have been?” so we run a second backtest with the estimate from the 

first. 

 

The problem here is that our first backtest underestimated our future returns because it didn’t have a 

good estimate of the parameter. And the second backtest overestimated our future returns because it 

used the same data twice (once to calculate the parameter and once to calculate the returns).  

 

Dividing our sample into two 7 year periods reduces the bias but means our estimate of future returns 

comes from only half as much data so loses predictability. It doesn’t solve the problem. 

 

Simulation solves this problem because we can simulate the whole 15 years and exactly measure the 

bias. Then we can test strategies for reducing it (maybe averaging the over and under estimates will 

work). 
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6. The Simulator 

 

We have built a market simulator that can be used to test a wide range of hypotheses about the markets. 

The simulator has two aspects to it – one of fitting parameters to the market and one of simulating 

markets with the fitted or any given parameters. 

 

We have used the programming language MATLAB for the simulator but intend to convert it into the 

free programming language R (R Development Core Team, 2012) and to make the code available for 

free on our web site www.ddnum.com/software/simulator. R has far more features for fitting 

and simulating statistical models than MATLAB. 

 

Features in the simulator to date include the ability to simulate: 

• noise – from Gaussian distributions, fat-tailed distributions such as Student t, distributions with 

given skewness and kurtosis (the Pearson family), and heteroskedasticity – using GARCH 

processes. 

 

• random processes – such as Brownian (random walk with parameters such as drift and 

volatility), Brownian Bridge (random walk with both ends constrained – useful to ensure a given 

return), Heston Model (allows correlation between returns and volatility), Ornstein–Uhlenbeck 

(useful for mean-reverting processes), and fractal processes. 

 

• time-varying parameters – parameters can be varied according to simple sine waves, sums of 

sine waves, asymmetrical sine waves (useful for cyclical markets where bull phases are longer 

than bear phases), sawtooths, random switching (between, say, bulls and bears), autoregressive 

processes, random walks, and time-varying Hurst exponent. 

 

• alpha and beta parameters – for simulating mutually correlated multiple assets according to 

the Capital Asset Pricing Model (CAPM), also we can have time varying alpha and beta values. 

 

• regime change – detection and modeling through use of Hidden Markov Models 

 

The Hurst exponent (H) is a parameter of a fractal process and has the useful property that H < 0.5 

means the process is mean-reverting, H = 0.5 is a random walk, and H > 0.5 is a trending process. We 
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can vary the Hurst exponent continuously (using any of the time-varying features) to simulate a market 

that moves between mean-reverting and trending phases. 

 

The idea behind having so many different simulation features is that we can try them all in a sensitivity 

analysis to see how an investment strategy is robust to various market properties and conditions. 

 

7. Example 1 – Optimizing Moving Average Crossover Rules 

 

In this section we emulate what a backtester (person or algorithm) might do to devise a trading rule to 

trade a given market. 

 

The basic backtesting strategy is to devise a rule, apply it to past market returns to optimize the rule 

parameters, then use those optimal parameters to trade the market going forward. The logic behind this 

strategy seems clear: our best guess, in the absence of any extra information, for trading in the future is 

what worked best in the past. Since markets can be fickle we may not have confidence that this rule may 

actually be the best going forward but it is difficult to see how we could choose anything better. 

 

As an example consider the much-beloved Moving Average Crossover Rule. It is a simplistic 

momentum strategy and serves as a standard illustration for quantitative techniques. We don’t advocate 

the strategy but note that it can be quite profitable – as an example the MA(200, 50) strategy where the 

200 and 50 refer to days is known in the industry as the “golden cross” and apparently works well for 

many markets. So we use it as an example in this paper. 

 

This strategy says to calculate a short period (call it n) moving average and a long period (call it m) 

moving average. Then trade long if the former exceeds the latter else stay out of the market. We 

abbreviate this to the MA(m, n) rule. The strategy works well when a time series enters a period of 

strong trend and then slowly reverses the trend. 

 

The problem that we deal with is how to estimate the best values for m and n. In particular, how do we 

estimate it when the only data that we have is market returns for the last, say, 15 years. 
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An obvious procedure is to look at what values of m and n worked best in the past and use those going 

forward. It doesn’t seem possible to improve on that. Surely the best estimate, without any extra data or 

predictions about the future, of what will work in the future is what worked in the past. 

 

The flaw in this view is that it fails to deal with the presence of noise in our estimates of m and n. 

 

We now show how noise manifests itself in backtesting and how we can remove some of it to improve 

our estimation of the best parameters for trading in the future. We start with our simulator. 

8. Return Surfaces for Moving Average Crossover Rules 

 

Using the simulator we generate sequences of returns for the S&P 500 for time periods of 15, 30, 60, 

and 480 years. We then apply backtesting to each sequence and look at the results. 

 

If our simulation was simply a random walk with constant drift then the returns would not be time-

varying and we would not be able to time the market. To simulate time-varying returns we generated a 

sum of two sine waves – a major wave with period of 1500 days and a minor wave of period 300 days 

for the bull markets and a major wave of period 500 days and a minor wave of period 250 days for the 

bear markets. We chose these numbers because they resemble the S&P 500 market of the last 15 years. 

We chose round numbers and did not attempt to accurately fit the market because an accurate fit is not 

required for this exercise (we know this from doing a sensitivity analysis). 

 

For each simulated sequence we try every possible MA(m, n)  rule for m from 1 to 400 and n from 1 to 

150 (note that n cannot exceed m) and plot the resulting returns in a heat diagram. In each pair of charts 

below the results are shown in the left hand chart. The point of maximum return is shown with a white 

cross – this is expected to be the trading rule that the backtester would declare optimal. 

 

In the first chart we see the white cross at MA(80, 48). We ignore the return at that point because it is 

irrelevant for this discussion. What we are interested in is where the white crosses lie. 

 

Because we set the parameters for this market in our role as Mr Market we know that the actual optimal 

MA trading rule is MA(134, 1). The 15 years of data produced an estimate of (80, 48) which is a long 

way from the optimum. So 15 years of data is not very much for this kind of backtesting. 
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Now try 30 years. The 30 year return surface is below. The optimum is at (120, 25) so we are getting 

closer. How about 60 years? 
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The 60 year surface below shows a maximum at (111, 1) so we are getting closer to the true value.  
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But after 480 years we are still not close. We chose the figure of 480 years for other reasons and we will 

discuss that below.  
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9. Reducing the Noise – Smoothing 

 

We notice that the surfaces, if pictured as 3-D objects are “rough” and it is tempting to smooth them. It’s 

not obvious if smoothing will work though and it’s not possible to test using real market data. 

Simulation is our only hope – we show here that it will work. Also it allows us to determine the optimal 

amount of smoothing which turns out to be higher than we intuitively expected. 

 

We consider three different smoothing algorithms for smoothing the surfaces. There are more available 

but three is enough to illustrate the principles involved. 

 

(1) The first we call smooth2a which is a simple two-dimensional local averaging. It replaces each pixel 

with the average pixel value of all pixels within a distance s of that pixel. It is quick and easy to 

understand but since each pixel is replaced with an average of nearby pixels it tends to flatten the peaks 

and troughs of the surface. Also it only works for two-dimensional surfaces whereas we would prefer 

something more general. 

 

(2) The next algorithm we call smoothn which is described in Garcia (2010). This fits spline curves in 

multiple dimensions and attempts to preserve curvature in the surfaces. It is a robust smoothing that 

minimizes the influence of extreme data and works for more than two dimensions. The smoothing 

parameter s determines the amount of curvature allowed in the splines and thus the degree of smoothing. 

 

(3) The third algorithm we call ksrmv which is a multivariate kernel smoothing regression. This places a 

small hill (or kernel) at each data point and adds up the hills to create the final surface. The technique is 

a standard one in mathematics and we used a 2008 implementation of the Nadaraya-Watson (1964) 

kernel regression provided by Yi Cao of Cranfield University. 

 

In the right hand chart of each of the pair of figures above we show the effect of smoothing using 

smooth2a and s = 30. The other smoothing methods give results that look similar. It is evident that 

smoothing before finding the maximum finds a maximum closer to the optimal point than not smoothing. 

Smoothing appears to improve the estimates of the optimal MA rule. We prove this in the next section. 

 

One remark that we would like to make here before moving on is that the optimal rule has n = 1. This is 

a bit unintuitive – we would have expected the optimal n to be higher to reduce variability in calculating 
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the short term moving average. Surely n = 2 would greatly reduce the variability and improve the trading 

rule. But no – the optimal rule has n = 1. 

 

And the really interesting part of this finding is that whenever we have determined the optimal value for 

n in other types of simulations and in sensitivity analysis we have always found the optimal value to be 

1. So we speculate that the optimal value for n is always 1. So much for the golden cross where n is 50. 

The investigation of this phenomenon is a topic for future papers. 

 

10. The Backtesting Results Chart 

 

This chart is a key chart of the paper and deserves a careful examination. 
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Along the horizontal x axis is the value of the smoothing parameter s (s = 0 corresponds to no smoothing, 

as s increases the amount of smoothing increases). The three colors in the chart are for the three different 

smoothing methods. For s = 0 there is no smoothing so all three lines converge to the same point. The 
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actual smoothing methods used are not as important as the fact that the results differ when using 

different methods. 

 

To aid in judging differences 95% confidence intervals are drawn (using shading) for each curve in the 

chart. The intervals for the method ksrmv are wider than for the others because ksrmv requires copious 

amounts of CPU time so we were unable to run as many simulations as for the other methods. 

 

The vertical y axis shows the mean annualized return of the various methods. The gray horizontal line is 

the expected return of the optimal moving average crossover strategy. This return is 13.39% and results 

from the optimal MA strategy which is the MA(134, 1) rule. We know this number exactly because we 

are Mr Market. 

 

We chose a time period of 15 years and simulated several thousand instances of our market. For each 

simulation we calculated the MA empirical return surface as a backtester would do when backtesting the 

15 years. Then we picked the MA empirical trading rule that maximized the return on that empirical 

surface. This is what a backtester would do when choosing a MA trading rule to trade going forward. 

 

In addition, for each empirical surface we smoothed the surface using a specified smoothing method and 

amount of smoothing s and calculated new “smoothed” trading rules, one for each value of s from 1 to 

about 70. Thus each surface gave us an “unsmoothed” trading rule and 69 smoothed rules. 

 

For these 70 trading rules we calculated the actual empirical past returns and the future expected returns 

(which we know because we are Mr Market). We did this over several thousand simulations and plotted 

them (and confidence intervals) in the chart for each value of s. 

 

All values above the gray line are the actual past empirical returns, all values below the line are the 

expected future returns. An example may make this clearer. 

 

Consider, for example, the case where s = 0 on the left. We see that the mean past return was about 17%. 

This means that on average a backtester who backtested 15 years worth of data in this market and used 

the best MA trading rule for that period would have measured the past return for that rule to be 17%. 

 

This is clearly an overoptimistic estimate of future market returns because as we already know, the best 

possible trading rule has an expected future return of only 13.39%. That is a well-known peril of 
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backtesting, that if it includes an optimization step it will overestimate future return (Aronson, 2007,  

calls this overestimate “data-mining bias” or “fools gold”). 

 

Just how much does it overestimate future returns? The three lines below the gray line show expected 

future returns and we can see that for s = 0 expected future returns are about 12.2%. 

 

The chart shows another bias – the “small sample” bias. The described backtesting methodology on 

average produced trading rules that are less than optimal since 12.2% is less than the optimal return of 

13.39%.  

 

This is where smoothing comes in. By applying various amounts of smoothing to the empirical return 

surfaces we generate from backtesting we get better estimates of the optimal trading rule and better 

estimates of future return (less data-mining bias). 

 

The former can be seen in the lower part of the chart – as s increases the future expected returns increase. 

Up to a point where we reach the optimal amount of smoothing. It looks like the optimal smoothing 

method is smoothn and the optimal value of s is 65 which produces an expected future return of 12.7%. 

This is better than the unsmoothed future return of 12.2%.  

 

The data-mining bias is the difference between the upper and lower lines of the same color (the 

difference between past returns and future returns). This decreases with increasing s but starts increasing 

again with excessive smoothing. 

 

A lesson from this chart is that optimizing past returns does not necessarily optimize future returns. This 

is unintuitive to a certain extent. We show it most dramatically in the next chart. Using s values in the 

range of 0 to 40 (the chart starts getting messy after 40) we plot for the three smoothing methods past 

mean returns versus future expected returns. The relationship is clearly negative. 

 

Negative means that the higher the past returns, the lower the future returns. This, more than anything 

else in this paper, shows the dangers of backtesting. If you try to maximize backtested returns you run 

the risk of reducing your actual future returns.  
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Another way of looking at the success of backtesting is to calculate the probability of getting “near 

enough” to the optimal rule. If we define near enough to mean getting within 1% of the best possible 

return from a moving average crossover strategy then we get the next chart. This shows that zero 

smoothing gives us a probability of 0.1 of getting close. But by more smoothing we can get as high as 

50% chance of getting close enough. 
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11. Example 2 – AAII Portfolio Optimization 

 

The American Association of Individual Investors (AAII) maintains a selection of investment strategies 

(that they call screens) applied to the U.S stock markets. They provide monthly return figures for 83 

strategies and indexes from 1998 to now (theoretical returns assuming no trading costs). The strategies 

have been garnered from books and academic papers and are listed on their web site at 

http://www.aaii.com/stock-screens. 

 

The strategies can be classified into nine styles - Value, Value with Price Momentum, Growth, Growth 

with Price Momentum, Growth & Value, Growth & Value with Price Momentum, Earnings Estimates, 

Specialty, and Indexes. Each strategy consists of a collection of stocks of the same style so behaves 

similarly to an Exchange Traded Fund. 

 

Due to the groupings by similarity within style we suspect that the strategies will have time varying 

performances depending on which style is in vogue in the market at any one time. If true then we may 

be able to time the strategies and switch between them to enhance our returns. 

 

We ask: is the dispersion in returns large enough and the noise small enough to allow us to perform 

market timing? Backtesting is unlikely to answer this question as we only have 192 monthly returns 

since 1998 and this is woefully inadequate for assessing statistical significance. 

 

Plus there is another problem – two of the strategies (the Piotroski ones) are outliers in their extremely 

high performance (see the charts below). The effect of this is similar to the effect of the 1987 crash – it 

heavily rewards investment algorithms that may undeservedly stumble upon the high performing outliers. 

 

We are tempted to remove the outliers to produce a more robust assessment of any investment 

algorithms. But we also want to make sure that if there are any outliers then our algorithms will latch 

onto them. So we cannot remove them. 

 

The only way to resolve this conflict and to solve the problem with lack of data is to use simulation. 

 

We constructed the simulation by measuring the alpha and beta of the 82 strategies against the 83rd (the 

S&P 500 index) according to the standard CAPM model. The alphas and betas vary with time so we 
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needed to use a time-varying regression model. The dlm package in R (Petris et el 2009) provides 

estimation for this model. Then we fitted sine curves to the varying alphas and betas. We also fitted sine 

curves to the S&P 500 and this process gave us in total all the parameters required for a complete 

ergodic market simulation. 

 

We plot below the mean-variance diagram for all 83 AAII strategies and indexes. Although they are a 

bit of a mess we leave in the labels of the strategies for the benefit of readers who may be familiar with 

them. It should be noted that the two strategies with the highest returns are the Piotroski strategies. The 

S&P 500 index is shown as a blue circle. The efficient frontier is shown as the blue curve. 
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The next chart shows the equity curves for the AAII strategies and indexes. The S&P 500 is shown in 

thick red (lower thick line). The thick green (upper) line is the M(4, 4) algorithm which will be 

explained in the next section. 
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12. Timing the AAII Strategies 

 

We now consider timing algorithms for the AAII strategies. The simplest might be the momentum 

algorithm. For multiple assets this is an improvement over the moving average crossover rule because it 

allows us to rank assets relative to each other.  

 

Momentum rules have been used by practitioners for decades but it was only recently that they were 

recognized by academics – Jegadeesh and Titman (1993). Momentum is the tendency of  

investments to persist in their performance whether good or bad. This persistence implies predictability 

– past returns predict future returns. One question is: what is the optimal past period (or lookback period) 

which best predicts future returns? 

 

When considering multiple assets there are two types of momentum: cross sectional momentum (CSM) 

and longitudinal momentum (LM). CSM (also called by other terms such as relative strength) is the 

tendency for relative performance among assets to persist – so the best performing assets tends to remain 

the best performing. Thus a CSM algorithm might invest the most money in the top performers of the 

group of assets. 
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LM (also called by other terms such as time series momentum or absolute momentum) is the tendency 

for a single asset to persist in its performance – either positive or negative. So an LM algorithm might 

invest the most money in assets that have positive past returns or returns greater than a threshold. 

 

The combined momentum algorithm (also called by other terms such as dual momentum or constrained 

relative momentum) invests the most money in assets that have the highest CSM provided that they have 

positive or high LM. 

 

This gives rise to some questions: what are the optimal cutoff thresholds (the values for which we 

exclude an asset from the portfolio) for the two momentums and what are the optimal lookback periods 

for them when applied to the AAII strategies? Also what is the optimal number of assets to hold? 

 

This is a five parameter optimization problem. A quote attributed to John von Neumann is “with four 

parameters I can fit an elephant, and with five I can make him wiggle his trunk,” (Dyson 2004). Fitting 

five parameters with just 192 observations is fraught with danger. We have no choice but to resort to 

simulation. 

 

For expository purposes we consider just three of these parameters: the optimal lookback periods and 

number of assets to hold. A momentum strategy with CSM lookback period of n and LM lookback 

period of m is labeled M(n, m). If the momentum rules find no assets to invest in we stay out of the 

market and, for simplicity, assume a cash return of zero. 

 

The next chart shows the results of a M(4, 4) strategy with 10 assets. We cherry-picked these parameters 

because they produce a good return which suggests that momentum may work here. But is it a 

significantly better return or just due to luck (or Piotroski)? Are these parameters optimal or can we find 

better ones? 

 

The chart shows the AAII strategies on a mean-variance diagram. The S&P 500 is the blue circle. The 

blue frontier is for the 83 assets including T-Bills, the red for omitting T-Bills. The red circles are the 

tangency portfolios which give the highest Sharpe Ratios. The two labeled magenta circles are the equal 

weighted strategy (EQWT) which equally weights all strategies and rebalances each month and M(4, 4) 

is the momentum algorithm with 4 month lookbacks and rebalancing each month into the top 10 assets.  
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The yellow ellipse is the 95% confidence interval on the combined results of 1000 monkeys investing at 

random each month into 10 assets. Any algorithm that falls outside the yellow area we can say with 95% 

confidence is different from random. 
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We note that equal weighting produces less volatility than the monkeys – this is due to the monkeys 

holding only 10 assets whereas EQWT holds 82 (no T-Bills). It is also higher than the mean monkey but 

this may be due to chance or it could be due to the monthly rebalancing benefiting from some mean 

reversion in the prices. 

 

The M(4, 4) algorithm greatly boosts the returns over EQWT at the cost of a somewhat lesser boost in 

volatility. It is significantly different from the monkeys but this isn’t useful information when it comes 

to optimizing the algorithm. What we really want are confidence ellipses for the M(n, m) algorithms but 

these are not possible with so little data. This is where simulation comes in. 

 

For this example we focus on Sharpe Ratio – we could look at any metric such as return or volatility or 

maximum drawdown. We simulated 15,000 instances of the AAII strategies as described above. For 

each instance we calculated the Sharpe Ratio (SR) for each combination of n and m from 1 to 24 and 
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each number of assets from 1 to 40. This produces 23,040 parameter combinations so we ended up 

calculating about 66 billion returns and 346 million Sharpe Ratios. This took a whole day. 

 

We calculated the mean of all the SRs for each parameter combination. Each mean was of 15,000 

observations and this was enough to give us three decimal digits of precision in the means – enough to 

regard the means as exact and to be able to ignore sampling error. This meant that we could calculate the 

optimal strategy exactly. We now look at the results. 

 

The maximum Sharpe Ratio obtained was 1.25 for M(23, 23) and 11 assets. By itself this figure isn’t 

very useful. Let’s look, for example, at how the optimum SR varies with the number of assets. 
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The chart on the left (the green upper line) shows the actual empirical backtested optimal SRs for each 

number of assets (up to 40). The chart on the right shows the exact results for the simulation (only up to 

25). We see a steep rise followed by a period of relative stability in the exact results. We view the left 

hand chart in this light and we postulate that even though the actual optimum occurs at 9 assets this is a 

noisy estimate and perhaps a little riskily too close to the steep drop off to the left. So we surmise that 

the best value to use going forward is in the 11 to 15 range. We pick the value 11 since it looks stable 

around that value and the simulation has its optimum at 11. 

 

The simulation has not provided us with a definitive unique answer to the optimum size of the AAII 

portfolio but it did provide us with enough insight to be suspicious of the backtested optimum of 9 and 

let us settle for a “more reasonable” 11. 
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The backtested SRs are mostly around the value of 1.4 whereas the exact simulated SRs are around 1.2. 

We cannot say where this difference comes from – it may be due to inaccuracies in the parameters 

chosen for the simulation and also due to overfitting (data mining bias) in the estimation of the optimal n 

and m parameters. So we wonder what would happen if we used the optimal n and m values from the 

simulation for the actual empirical AAII data. This should remove some data mining bias. 

 

We get the orange line in the chart on the left. We only did this for curiosity – there is no guarantee that 

the optimal values from the simulation should be optimal for the AAII data going forward. But it still 

gives a rough idea of the amount of data mining bias that may be present in the AAII backtest. And it 

demonstrates some of the types of testing we can do in sensitivity analysis where we test how robust the 

findings are to changes in the parameters used for the simulation. 

 

What of the optimal n and m values themselves? Can we learn anything about them from the simulation. 

The answer is “definitely.” 

 

The AAII data for each number of asset values gives us a surface where we vary n and m each from 1 to 

25 and plot the resulting Sharpe Ratio. We show samples of these surfaces below for number of assets 1, 

5, and 25 in the left hand chart of each pair. We also show on the right the corresponding charts from the 

simulation. 
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We see the same tendencies in both series of charts. For small numbers of assets the optimum seems to 

be n = m whereas for larger numbers the optimum moves to the lower right corner. This might seem 

reasonable – when we have to pick out more assets we have to look at more data to be able to 

distinguish them relatively. This is certainly a topic to investigate further. 

 



 29 

In the meantime, both charts tell us the same story – use n = m. But they differ on the optimal sizes of n 

and m. The actual empirical AAII data likes small values – about 5 or 6 months – and the simulations 

like larger values – around 24 months. We wonder why. Maybe the actual data is dominated by the 

Piotroski effect which encourages short term trading. Maybe the simulation doesn’t match the AAII data 

well enough. More on this matching problem in the next section. 

 

Having determined the effectiveness of momentum strategies we now ask – can we improve on them? 

Comparing returns over a lookback period is an inherently noisy process – returns have a huge amount 

of noise in them. Perhaps we can smooth the returns using regression or the Kalman Filter before doing 

the comparison. Would a robust regression be even better? Should we include quadratic terms in the 

regression (Li-Wen and Hsin-Yi, 2013 say so)? Maybe we can use the residuals from a regression (see 

Blitz et al 2011 for a discussion of residual momentum). du Plessis (2013) splits our cross sectional and 

longitudinal momentums into six different varieties (three for each type) which gives six single plus 36 

combined algorithms to test. More strategies abound in the literature. 

 

Indeed, some of these strategies do improve the backtested performance on the actual AAII data. But is 

the performance genuine? Is this an extreme example of data mining? Only simulation can remove the 

noise and reveal the true winner. 

 

13. The Problem with Simulation 

 

There is an old parable about a drunk who has lost his keys in the night and is searching for them under 

a streetlight. A policeman helps him search but after a few minutes to no avail he asks the drunk if he is 

sure he lost them there, and the drunk replies, no, that he lost them in the park. The policeman asks why 

he is searching there, and the drunk replies, “this is where the light is.” This is called the streetlight 

effect (Freedman 2010). 

 

A similar effect applies here. We seek the solution to a market problem by leaving the market, creating a 

new problem by simulation, and seeking the answer there. 

 

This is the weakness of the simulation method. The answer in the simulation may not be the answer in 

the market. If the optimal smoothing parameter is 40 in the simulation is the optimal value in the market 

going to be 40? 
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We suggest no, not exactly. The simulated answer is not to be taken definitively even though it might be 

calculated to 10 decimal digits. But it is indicative. Prior to the simulations we had intuitively used the 

parameter value 6 for method smooth2a. That valued seemed to give appealing visual smoothes. 

 

But since doing the simulations we have switched to using the value 40. That seems by eye to smooth 

out too many of the nice peaks and troughs. However, we trust the simulations more than we trust our 

untrained eyes. We don’t expect to be around for another 500 years to find out if we were right to switch. 

But 40 is evidence-based and our value of 6 wasn’t. So even though the evidence is not definitive we 

feel that instead of being totally in the dark the simulations shed useful light on the problem. 

 

To some extent we have replaced one challenge – that of insufficient data – with another challenge – 

that of modeling a market. The data problem cannot be fixed with time – we can only collect new data at 

the rate of 12 months’ worth every year but we need centuries worth, not years. The modeling problem 

is being solved at an exponential rate – computer power is still increasing exponentially (Moore’s Law) 

and Data Science is a brand new exponentially growing evolution of Statistics started over just the last 

few years to handle the vast quantities of data becoming available from space and from the global 

internet. New algorithms in this field are being published every week. Most are implemented in code 

that is open source. 

 

The best is yet to come. 
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