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Abstract 

This paper is targeted towards active traders who follow a systematic approach to 

alpha generation and wish to thoroughly understand the potential risks and rewards 

expected from a trading system prior to allocating capital. The conclusions are applicable 

to all timeframes and parameter-based systems though the example specifically discussed 

herein is an end-of-day trading system. The goal of this paper is to assist the trader in 

answering two questions: 1) “What is a reasonable performance estimate of the long-run 

edge of the trading system?” and, 2) “What worst-case contingencies must be tolerated in 

short-run performance in order to achieve the long-run expectation?” With this 



information, the trader can make probabilistic, data-driven decisions on whether to 

allocate capital to the system and once actively trading, whether the system is “broken” 

and should cease trading.  

After explaining assumptions, definitions, and methods, the paper discusses how 

and why traditional trading system development processes lead to positively biased 

performance estimates due to the data mining bias (DMB). Without understanding the 

substantial effects DMB has on historical simulation results, inappropriate or inaccurate 

conclusions may be reached. Several existing methods of DMB mitigation are briefly 

examined.  

The main focus of the paper is to outline System Parameter Permutation (SPP) and 

its application as a simple yet effective performance estimation method as an alternative 

to traditional cross-validation or more complex DMB compensation. In the simplest of 

terms, SPP is a method to generate sampling distributions of system performance metrics. 

The method provides a practical means to estimate the performance of the trading system 

edge as well as to perform statistical significance testing. SPP leverages the statistical law 

of regression toward the mean and maximizes the use of historical market data. 

In system optimization, regression toward the mean indicates that the specific 

combination of optimized parameter values which led to extreme performance in 

historical simulation will probabilistically not retain a level of extreme performance in 

the future. Rather than examining regression toward the mean over time, SPP leverages 

the optimization inherent in typical parameter-based system development to generate a 



sampling distribution of performance expectations where the effects of regression toward 

the mean may be examined across system variants (combinations of parameter values).  

After defining SPP, the paper provides instructions for how to apply the method to 

any type of parameter-based trading system. Specific instructions are included on how to 

apply the method in order to estimate probable ranges of long-run and short-run 

performance as well as to test statistical significance. The paper also explains why SPP is 

effective and how probabilistic information can be extracted in order to facilitate data-

driven capital allocation decisions. 

One of the strengths of SPP is that the resulting sampling distributions of system 

performance metrics enable realistic contingency planning based on probabilities. Unlike 

random resampling methods such as bootstrap or Monte Carlo permutation (MCP), the 

random variation in SPP comes from the application of a set of slightly varied entry/exit 

rules on actual market data where trading signals are evaluated using a realistic simulated 

portfolio. In effect, SPP explores facets of the trading system that would otherwise 

remain hidden yet are possible in real trading.  

For demonstration purposes, SPP is applied to an example rotational system based 

on relative momentum. After performing traditional optimization and cross-validation on 

this system, SPP is used to create long-run and short-run performance estimates which 

are compared to the traditional approach.  

The example shows that compared to standard out-of-sample (OOS) cross-

validation, SPP provides the trader with much more information. SPP creates long-run 



and short-run sampling distributions of system metrics using all available historical 

market data whereas traditional OOS cross-validation provides only a point estimate on a 

subset of historical market data. SPP enables probabilistic decision making whereas 

traditional OOS necessitates a binary pass/fail decision. Thus SPP enables a much deeper 

understanding of how the trading system may perform going forward.  

SPP applied to the relative momentum trading system also shows that the system 

outperforms its buy-and-hold benchmark over the long run. However, the SPP short-run, 

worst-case contingency analysis indicates that in order to achieve long-term 

outperformance, the trader must be willing to accept the possibility of significant 

underperformance and negative absolute returns in the short-run. With this information, 

the capital allocation decision may be made probabilistically.  

The paper concludes with key takeaways. Ultimately the strength of SPP is the 

balance of simplicity, ease of implementation, and realism. The author hopes SPP will 

help the reader increase his odds of success in trading the markets through a deeper 

understanding of how his trading system functions and provide a more realistic view of 

expected future performance.  



1. Introduction 

Prior to putting capital at risk, every trader desires an accurate estimate of the 

potential risks and rewards expected from a trading system and often employs historical 

simulation to gain such an understanding. Unfortunately, many traders are subsequently 

frustrated by poor realized trading system performance that does not live up to overly 

optimistic expectations. One large and prevalent source of overly optimistic expectations 

that remains largely misunderstood and underestimated is the data mining bias (DMB). 

Even though DMB tends to have a large impact on historical simulation results, 

mitigation tools available to the average trader are relatively crude. More advanced tools 

are available to academics and quantitative professionals but are largely too complex for 

the average trading system developer. This paper attempts to change that by introducing 

System Parameter Permutation (SPP). With SPP, the average trader is armed with a 

simple yet powerful tool to effectively mitigate data mining bias and more accurately 

estimate future trading system performance. 

The power of SPP extends beyond mitigating data mining bias however. SPP 

explores facets of the trading system due to the interaction of system rules, portfolio 

effects and market data that other methods do not. Thus SPP enables a much deeper 

understanding of potential risks and rewards prior to allocating capital to a system. 

2. Basic Requirements, Definitions and Methods 

The only requirement in order to apply SPP as defined in this paper is that the 

trading system must be completely rules based and use parameters which are optimized 



during the development process. This requirement is necessary because SPP makes use of 

the parameter optimization process and corresponding data. Thus SPP is most applicable 

to trading systems based on technical analysis. 

The following definitions and methods are used heavily throughout this paper: 

 Quantitative Trading System: A trading system defined by clear, unambiguous, 

and comprehensive entry and exit rules which can be machine coded. The results of a 

quantitative trading system can be independently reproduced and verified. Any mention 

of the term trading system in this paper implies it is quantitative. 

The trading system used in this study is long only, meaning no shorting or inverse 

ETFs were used. In the context of a historical simulation, long-only systems greatly 

reduce the number of assumptions made regarding ability to borrow shares, share call-

backs, dividends paid, and interest charged. The trading system was developed based on 

published research and simulated using realistic portfolio simulation which accounts for 

margin available, prioritization of trading signals, position sizing, and portfolio heat 

limits.  

Trading Universe: A total of ten ETFs were used: SPDR S&P 500 ETF (SPY), 

iShares Russell 2000 ETF (IWM), iShares MSCI Emerging Markets ETF (EEM), iShares 

Core S&P Mid-Cap ETF (IJH), PowerShares QQQ ETF (QQQ), SPDR Gold Shares ETF 

(GLD), iShares MSCI EAFE ETF (EFA), iShares 20+ Year Treasury Bond ETF (TLT), 

iShares US Real Estate ETF (IYR), iShares 1-3 Year Treasury Bond ETF(SHY). These 

ETFs were chosen because they are the most liquid ETFs covering major asset classes.  



Historical Simulation Timeframe: The trading system historical simulation period 

for this analysis begins 11/19/2005 and ends 5/31/2013. The start date was selected to 

allow roughly one year of market data history for all traded ETFs (GLD started trading 

11/19/2004) prior to any entry signal.  

Input Data: Daily OHLC market data were used from Norgate Premium Data and 

adjusted for splits. Market data were not adjusted to include dividends in order to avoid 

non-linear, a posteriori distortion of technical indicator-based trading signals that use 

percentages (Kaufman (2013)). To be as realistic as possible, historical dividend data 

were used from Yahoo! Finance1 and dividend payments were injected into the portfolio 

as cash per the applicable ex-dividend date.  

Transaction Costs and Fees: A $0.01 per share per side allowance was made for 

commissions as well as a 0.05% estimate per side for slippage. Where applicable, margin 

interest was charged daily at a rate of 1.5% + the Fed Funds daily rate2 (varied between 

0.04% and 5.41% in the simulation period). Data for the Fed Funds daily rate was taken 

from the public website of the Federal Reserve Bank of New York3. All order types used 

were Market-On-Open, Market-On-Close, or Market-On-Stop. Thus fees and slippage 

were modeled towards what a retail trader might expect to see.  

Output Data: Four different system metrics were evaluated: 1) compounded annual 

return including dividends, 2) max drawdown, 3) annualized information ratio4 (vs. 

                                                           
1 http://finance.yahoo.com/ 
2 From the current (January 2014) schedule of fees for margin interest from Interactive Brokers <$500,000 borrowed. 
3 http://www.newyorkfed.org/ 
4 Defined as expected active return (system return – benchmark return) divided by tracking error: �� = ��������

�����������
. 



dividend re-invested SPY ETF), and 4) annualized standard deviation of daily returns. 

For cross-validation of historical simulations, traditional Out-Of-Sample (OOS) testing 

was used for comparison to the SPP performance estimation method discussed in this 

paper. In OOS testing, market data was split into 80% training and 20% validation sets, 

with the validation set comprising the most recent data.  

3. Data Mining Bias 

Many traders are familiar with the idea that future trading system performance is 

likely to be worse than was seen in historical simulation. However, the origins of this 

performance degradation are often not well understood. One significantly large cause is 

the DMB, also commonly known by other names such as curve-fitting, over-fitting, data 

snooping, or over-optimization. DMB is built-into the typical system development 

process and yet largely remains unknown, misunderstood, and/or ignored.  

This may be understandable for retail traders with limited knowledge of statistics. 

However, Bailey et al. (2013) note that professional publications also tend to disregard or 

gloss over the effects of DMB. Unfortunately ignoring the problem doesn’t eliminate the 

consequence which is that the trading system fails to live-up to performance expectations 

in cross-validation or worse in live trading. 

3.1 Understanding Data Mining Bias 

To understand DMB, one must first recognize its two preconditions which are 

inherent to the system development process: 1) randomness and, 2) a multiple 

comparison procedure in the search for the best system rules. The interaction of 



randomness and the search process is unique to the system rules evaluated and the 

historical market data and results in inflated performance metrics. 

The first precondition of DMB, randomness, means the random walk component of 

market data. In any sequence of trades, the result of system rules acting on the random 

walk component is equally likely to be favorable (good luck) or unfavorable (bad luck). 

Thus realized trading system performance consists of two components of unknown 

relative magnitude: the inherent edge and luck. Periods of good and bad luck cause 

variability around the long-run expected performance due to the system edge.  

The second precondition of DMB is the multiple comparison and selection process 

inherent to the typical system development process. At each stage of development, 

system rules and parameters exhibiting the best performance are selected from historical 

simulation results. This selection process is known as data mining. Because of the 

random component in measured performance, the selected rules are guaranteed to have 

taken advantage of good luck. The probability that a favorable result is due to chance 

alone increases with the number of combinations tested. 

Almost all trading system development platforms support multiple types of search 

optimization algorithms and thus lead the developer, perhaps unknowingly, into a data 

mining venture. The process of data mining to find the best performing system rules is 

not the problem however. Data mining in attempt to find the best (in meeting the 

objectives of the trader) entry/exit rules and best combination of parameters is a natural, 



intuitive process. In fact, Aronson (2007) mentions that data mining is the “preferred 

method of knowledge acquisition” when employing technical analysis.  

The real problem is not considering that the performance of the chosen system 

rules is inflated by good luck and that the same amount of good luck is not likely to 

repeat in the future. In fact, the statistical law of regression toward the mean5 indicates 

that extreme performance in historical simulation will be probabilistically followed by 

performance closer to the unknown, long-run level of performance of the inherent edge. 

This is illustrated in figure 1. 

Figure 1: Impact of Luck on Trading Results 

 

3.2 The Consequences of Data Mining Bias 

DMB has two consequences: inflated performance metrics and inability to perform 

statistical inference using standard methods. Both consequences can lead to improper 

decision making. 

 A logical question is how large DMB might be. Although the magnitude of the 

DMB is specific to the analyzed trading rules and market data, it can be quite large. For 

                                                           
5 “Regression toward the mean” is a statistical law, not to be confused with the financial term “mean reversion” which 
assumes that observed high and low prices are temporary and that price will tend to move to the average over time. 



6402 simple trading rules data mined on the S&P500 index over 25 years of historical 

data, Aronson (2007) found that the level of annual return needed to overcome DMB was 

approximately 15% at the significance level of α = 0.05 and none of the examined rules 

had any statistically significant edge. 

Further, attempting to test the statistical significance of performance metrics using 

standard statistical inference procedures is not valid when the data contains systematic 

error (DMB is systematic error). Sound statistical inference in the context of data mining 

requires the use of a sampling distribution which includes the effect of good luck.  

3.3 Mitigating Data Mining Bias 

Data mining bias is systematic; it is inherent to the typical system development 

process. DMB cannot be lessened or eliminated by evaluating via the “best” system 

performance metrics or by performing a “perfect” historical simulation (properly 

modeled transaction costs, clean and accurately adjusted market data, no look-ahead bias, 

no hindsight bias, no survivorship bias, properly modeled portfolio effects, omissions and 

contingencies considered, etc.). The only viable methods to estimate performance or test 

significance in the presence of DMB are those that consider systematic error. 

One such method is to estimate performance and perform significance testing on 

an independent data sample which effectively is looking at system performance after 

regression toward the mean has occurred; this is known as cross-validation. Another 

method is to perform significance testing by creating a sampling distribution of maximum 

means that reflects the role that good luck plays in data mining; this is known as bias 



compensation. Yet another method is to calculate a deflation factor for data mining bias 

which is applied to measured performance metrics.  

Aronson (2007) explains each of these methods in detail. The key strengths and 

weakness of each is summarized in table 1. 

Table 1: Comparison of Methods to Mitigate DMB 
 Strengths Weaknesses 

Cross-
Validation 

Ease of use, allows statistical inference, 
provides performance estimate 

Inefficient use of market data, smaller 
sample size reduces accuracy 

Bias 
Compensation 

Allows statistical inference, efficient 
use of market data 

Complex, special software + large database 
required, no performance estimate 

Bias Deflation Provides performance estimate, 
efficient use of market data 

Possibly inaccurate, large database 
required, statistical inference not possible 

4. System Parameter Permutation 

Each method of DMB mitigation described in the previous section has certain 

limitations or complexities. This section offers an alternative method named System 

Parameter Permutation (SPP). SPP provides a practical means of estimating the 

performance of a trading system as well as statistical significance testing. SPP is not 

subject to data mining bias6 and uses standard trading system optimization approaches 

that are already built-into generally available system development software packages.  

SPP provides much more than a method to mitigate DMB however. SPP enables 

the trader to objectively determine: 1) the performance of the inherent edge expected in 

the long-run, and 2) the worst-case performance expected in the short-run. With this 

information, the trader can make data-driven decisions on whether to allocate capital to 

                                                           
6 To ensure the absence of DMB, SPP must be conducted as a standalone process (not to compare systems). Any ex post 
selection based on performance has the potential to introduce DMB as discussed in section 3. 



the system and once actively trading, whether the system is “broken” and should cease 

trading. 

4.1 System Parameter Permutation Defined 

In the simplest of terms, SPP generates sampling distributions of system 

performance metrics by leveraging the system optimization process. Each point in a 

given distribution is the result of a historical simulation run that accurately modeled 

portfolio effects. Via sampling distributions, the trader may evaluate a system based on 

any desired performance metrics. SPP then uses the descriptive statistics of the sampling 

distributions to arrive at performance estimates and measures of statistical significance.  

Unlike standard optimization, SPP does not simply choose the best set of 

parameters but rather uses all of the performance data available for all sets of parameters 

evaluated during optimization. Whereas traditional optimization picks the best set of 

parameters and discards the rest, SPP makes use of all available information. Figure 2 

illustrates the difference. 

Figure 2: SPP Compared to Traditional Optimization 

 



For each system metric of interest, the output of SPP is a sampling distribution that 

includes trade results from all system variants (combinations of parameter values) where 

the median serves as the best estimate of true system performance. This is very different 

than cross-validation or data mining bias compensation which use the result of a single 

sequence of trades in order to estimate system performance. 

The median performance is used as the best estimate of future performance for 

several reasons: 1) the median is not subject to data mining bias because no selection is 

involved; 2) no assumptions of the shape of the distribution are required; and 3) the 

median is robust in the presence of outlier values.  

4.2 Steps of System Parameter Permutation 

In order to generate sampling distributions of system variant performance metrics, 

the set of parameter ranges under which the trading system is expected to function is 

determined ex ante in preparation for optimization. Methods to choose the parameter 

ranges and observation points are beyond the scope of this paper; however Kaufman 

(2013) and Pardo (2008) are suggested for further research into these topics. SPP follows 

these general steps: 

1) Parameter scan ranges for the system concept are determined by the system developer. 

2) Each parameter scan range is divided into an appropriate number of observation points 

(specific parameter values). 

3) Exhaustive optimization (all possible parameter value combinations) is performed 

using a realistic portfolio-based historical simulation over the selected time period. 



4) The simulated results for each system variant are combined to create a sampling 

distribution for each performance metric of interest (e.g. CAR, max drawdown, 

Sharpe ratio, etc.). Each point on a distribution is the result of a historical simulation 

run from a single system variant. 

Figure 3: General Steps of System Parameter Permutation 

 

Figure 3 illustrates the process. In this case, sampling distributions for four 

performance metrics are shown for illustration. Any number of specific performance 

metrics may be selected by the trader for his specific objectives. The cumulative 

distribution function (CDF) for each metric may be examined directly and may be used 

for performance estimation and statistical inference.  

In order to ensure the SPP result is not biased, care must be taken to thoughtfully 

select parameter scan ranges ex ante. If SPP is repeated multiple times by changing the 

parameter scan ranges in attempt to get a better result, data mining is at work and the SPP 

estimate may become positively biased. Since the intent of SPP is the avoidance of bias, 



such a practice would be counterproductive. Thus it is important that the system 

developer start the system development process with this consideration in mind. 

4.2.1 SPP Estimate of the Long–Run Performance of the Trading System 

The trader would like to answer the question: “What is a reasonable performance 

estimate of the long-run edge of the system?” SPP can effectively answer this question.  

To generate long-run performance estimates, sampling distributions are produced 

as described above using all available market data. The use of all available market data 

enables the best approximation of the long-run so the more market data available, the 

more accurate the estimate. For each performance metric of interest, the median value is 

used as the best, unbiased performance estimate. 

The trader may also be interested in testing the statistical significance of the SPP 

long-run performance estimates either in terms of absolute returns or relative to a 

benchmark. Because SPP generates complete sampling distributions, estimated p-values 

and confidence levels may be observed directly from the CDF as illustrated in figure 4. 

Figure 4: Using the Cumulative Distribution Function for Statistical Inference 

 



The example in figure 4 shows that in 95% of cases, the true value lies in the 

confidence interval above the level of 5% compounded annual return (CAR); this is 

equivalent to a p-value of 0.05. Depending on the objectives of the trader, this may or 

may not be satisfactory. If the trader is interested in outperforming a benchmark with a 

CAR of 10%, the picture is a bit different. In only 59% of cases does the true value lie in 

the confidence interval above the benchmark return; this is not statistically significant. 

4.2.2 Short-Run Performance Estimate and Worst-Case Contingency Analysis 

Whereas the long-run performance estimate indicates what may be expected from 

the system edge long term, short-run variability may be significant. Thus, the trader 

would also like to answer the question: “What worst-case contingencies must be tolerated 

in short-run performance in order to achieve the long-run expectation?” Once the short-

run time period is specified, SPP can effectively answer this question.  

The duration of the short-run time period is dependent on the preferences and 

psychology of the trader and/or clients. Chekhlov et al. (2003) mention that the typical 

drawdown duration tolerated by clients of managed account practitioners ranges from 1-2 

years at the most. In any case, the trader needs to determine the duration of the short-run 

time period that best fits the trading objectives. In general, shorter duration periods have 

wider ranges of expected performance. 

The following steps explain how to perform SPP for the short-run time period: 

1) All available market data is split into blocks equal in length to the short-run time 

period (�). Each time block may overlap with the previous block depending on the 



timeframe of trading signals (such as any month within a year or any hour within a 

day). This results in some number of time blocks (�).  

2) Steps 1-4 of the general SPP process are performed on all � time blocks 

separately. Thus if a system has � combinations of parameter values, a total of 

� ∙ � optimization permutations are performed on a historical time period of 

length � in order to generate the sampling distribution for each performance metric 

of interest over the selected short-run timeframe. 

Figure 5 below illustrates the process. Again, sampling distributions for four 

performance metrics are shown for illustration. Any number of specific performance 

metrics may be selected by the trader for his specific objectives. 

Figure 5: SPP Application for Short-Run Performance Estimation 

 



The sampling distributions resulting from this process each contain many more 

individual samples with a higher degree of variation than were generated via the SPP 

long-run performance estimate process. However each sample has a shorter simulation 

timeframe and thus a fewer number of closed trades contained in each sample. With 

fewer closed trades per sample, the standard error associated with each sample increases. 

As the standard error per sample increases, so does the variation of the sampling 

distribution. The increased variation can be seen in the respective probability density 

functions as shown in figure 6 below. 

Figure 6: Increased Variation in Short-Run Performance 

 

With sampling distributions, the trader may make a probabilistic, data-driven 

decision of whether to risk capital on the system. To do so, the trader determines a 

probability level he determines to be highly improbable but tolerable as his worst-case 

(common levels are 5% or 1%).  Alternatively, the trader may specify the worst-case in 

terms of the least favorable but tolerable level of performance. Whatever worst-case 

probability or level of performance is chosen, the CDF of the short-run system metrics of 

choice are examined as in figure 7. If the worst-case contingency at the respective 
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probability cannot be tolerated by the trader or clients, capital should not be allocated to 

the system. 

Figure 7: Evaluating the "Worst-Case Contingency" 

 

The example in figure 7 indicates that if the trader cannot tolerate a 5% probability 

of a realized compounded annual return of -5.51% over the short-run time period chosen, 

the system should not be traded. If the worst-case contingency is tolerable and capital is 

allocated to the trading system, the same (or different) worst-case probability(s) or 

level(s) of performance may be used to determine whether the system is “broken” and if 

trading should cease. 

The stop trading decision should be made when the system has been traded for the 

duration of the short-term period selected. Thus if one year was selected as the short-term 

time period, the stop trading decision should only be made at the one year mark. Again 

using the example in figure 7, if realized performance is worse than -5.51% over a year of 

trading, the trader may decide to stop trading the system because the ex ante worst case 

contingency was violated. Any timeframe or probability may be used in this decision. 

Thus SPP enables the trader to add an objective method of risk control to his trading plan.  
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4.3 Why System Parameter Permutation is Effective 

Using traditional optimization, all performance metrics for the system are derived 

from the single (best) sequence of trades selected during the optimization process. In 

order to generate a distribution of contingencies, randomization techniques employing 

resampling such as bootstrap or Monte Carlo Permutation (MCP) are commonly used.  

There are several problematic assumptions made by resampling methods but two 

are of particular interest here: 1) the result of a single historical simulation is 

representative of the future distribution of trade results; 2) real world portfolio effects 

combined with position sizing are accurately modeled. The discussion of data mining 

bias already showed that assumption number one is problematic. Assumption number two 

is also problematic; portfolio effects such as buying power, dynamic inter-symbol 

correlation, and autocorrelation would likely not allow some of the resampled results to 

occur in real trading. Likewise, this type of randomization does not explore trades unseen 

in the original, single sample sequence of trades that may have occurred under slightly 

different conditions. This is a natural consequence of random resampling. 

Unlike random resampling, the random variation in SPP originates from the 

application of a set of slightly varied entry/exit rules on actual market data where trading 

signals are evaluated using a realistic simulated portfolio. In effect, SPP explores facets 

of the trading system that would otherwise remain hidden yet are possible in real trading.  

SPP produces reliable estimates of trading system performance by: 1) leveraging 

the statistical law of regression toward the mean, and 2) extracting maximum information 



from available market data. For #1, the use of a large number of combinations of 

parameter values thoroughly examines various ways randomness may affect the system 

and thus estimates the effects of regression toward the mean. For #2, the use of all 

available market data ensures that performance results contain the smallest standard error 

possible and that the system has been exposed to the most varied market conditions 

possible. Both are explored in more detail. 

4.3.1 How SPP Leverages Regression toward the Mean 

In system optimization, regression toward the mean indicates that the specific 

combination of optimized parameter values which led to extreme performance in 

historical simulation will probabilistically not retain a level of extreme performance in 

the future. The section on data mining bias showed that extreme performance tends to 

regress toward the mean level over time as the impact of luck tends to change. It is 

instructive to examine the mechanics of how luck affects system variant performance. 

In general, good luck involves some combination of catching favorable market 

moves and avoiding adverse market moves. One way luck affects system performance is 

through the interaction of parameters on market data. Parameter values control the exact 

timing of entry and exit signals; one combination of parameters may generate a very 

favorable set of entry and exit signals where other similar combinations may generate 

much less favorable signals on the same market data.  

SPP generates a distribution of performance results from a large number of 

individual historical simulation runs that use the same market data applied to different 



combinations of parameter values. The distribution includes the results from many 

slightly different entry/exit signal combinations across simulation runs. With a large 

number of samples, the impact of regression toward the mean is seen to varying degrees 

over the distribution of system variant performance results as shown in figure 8 below. 

Figure 8: Sampling Distribution Generated by SPP 

 

Another way luck affects system performance is through the interaction of the 

timing of market entry/exit signals and portfolio effects such as buying power, dynamic 

inter-symbol correlation, and autocorrelation. As demonstrated by Krawinkel (2011) 

randomly skipped trades can have a large impact on realized system performance. Yet, 

this phenomenon remains largely unrecognized and underexplored. SPP thoroughly and 

realistically explores this effect through the distribution of performance results.  

In SPP, one combination of parameter values may capture a certain set of trades 

whereas a slight variation in parameter values may capture trades not previously seen 

and/or skip others that were previously captured. Through this interaction, SPP includes 

the effects of randomly skipped and included trades. Again the impact of regression 

toward the mean is seen to varying degrees over the distribution of performance results. 



4.3.2 How SPP Extracts Maximum Information from Available Market Data 

SPP minimizes standard error of the mean (SEM) by using all available market 

data in the historical simulation. As sample size increases, SEM decreases proportional to 

the square root of the sample size due to the mathematical identity: SEM = �/√�.  

Although the use of all available market data is not a unique feature of SPP, it is 

one of its strengths. In contrast, traditional cross-validation methods split market data in 

some way. The effect on SEM of such a split can be large. Table 2 shows the 

approximate percentage increase of SEM for various data splitting schemes over SPP.  

Table 2: Increase of SEM for Market Data Splits 
 50/50 Split 80/20 Split 90/10 Split 

In-sample 41% 12% 5% 
Out-of-sample 41% 124% 216% 

Further, Inoue and Kilian (2002) found that OOS and IS tests are equally reliable 

in the presence of data mining once proper critical values are used and that IS (using all 

market data) tests have power advantages when there is “unmodelled structural change in 

the parameter of interest” (a change in market conditions). The use of all available market 

data ensures that the system has been exposed to the most varied market conditions 

possible in historical simulation. Doing so cannot guarantee that future market conditions 

will be similar to those seen historically but any sort of data split ensures loss of 

information and thus less representative performance results. The most information rich 

historical simulation uses all available market data.  



5. Practical Example of SPP Applied to a Model Trading System 

The relative momentum concept in the style of Blitz and Van Vliet (2008) was 

chosen to create an example system because significant research has validated these types 

of strategies within and across many different asset classes (Asness et al (2009)). Further, 

a large amount of post-publication, out-of-sample validation exists for relative 

momentum (Asness et al (2009)) thus confirming its viability.  

5.1 Generalized System Model  

The relative momentum trading system concept is based on the observation that the 

best performing assets or asset classes in the current period tend to continue their 

outperformance in the next period. Research indicates that momentum measured over 3-

12 months tends to show the largest edge.  

The generalized system model defines how momentum is measured, the number of 

assets to comprise the portfolio, and the timing of asset selection. In the interest of risk 

management, a catastrophic stop-loss is added to the general model as well. Thus the 

generalized system model shown in figure 9 contains four parameters.  

Figure 9: Relative Momentum Generalized System Model 

 



The ROC indicator was chosen to measure momentum as the percentage change 

over the look-back period. The timing of asset rotation was chosen to be once per month 

on a specific day in relation to the last trading day of month. Finally a catastrophic stop 

loss as a percentage of the entry price was introduced for risk management. 

The parameter scan ranges were defined in light of the generalized system concept. 

The portfolio composition was limited to the top 2-5 assets out of 10 in a balance 

between momentum and diversification. The ROC look-back length was varied in 

increments of 10% starting from 60 trading days (~3 months) up to 251 trading days (~1 

year). The date of entry/exit rotation chosen was the last trading day of month +/- 5 

trading days. Finally the stop loss was varied from 10% to 20% in increments of 2%. The 

system details are shown in table 3.  

Table 3: Relative Momentum Trading System Details 
System Component Indicator Minimum Maximum Step # Values 

# Assets Held N/A 2 5 1 4 
Momentum Rank ROC(a) 60 251 10% 16 

Rotation Time Period Last DOM + b -5 5 1 11 
Stop Loss Point % of entry price 10% 20% 2% 6 

Exhaustive optimization of the above scan ranges resulted in 4224 combinations of 

parameter values. The method of position sizing used was equal margin per position. A 

standard 100% maintenance margin requirement was used along with a 5% cash safety 

buffer. This allowed up to 95% of trading capital to be used to take entry signals. 

5.2 Optimization Results and Out-of-sample Calibration 

This section discusses traditional OOS testing applied to the trading system. The 

OOS analysis is used for comparison purposes to SPP.  The trading system was 



optimized using the annualized information ratio (vs. the dividend reinvested SPY ETF) 

as the fitness function in order to maximize benchmark outperformance. The OOS test 

used 80% of available market data in-sample and the remaining 20% was reserved for 

out-of-sample calibration. Results are shown in table 4. 

Table 4: Relative Momentum System OOS Results 
 IS OOS OOS % of IS 

Compounded Annual Return 22.41% 14.47% 65% 
Maximum Drawdown -18.06% -9.6% 53% 

Annualized Standard Deviation 19.08% 11.96% 63% 
Annualized Information Ratio 0.70 -1.20 -171% 

Using this method, the OOS performance metrics serve as the only unbiased 

estimates in setting expectations for future performance and thus also serve as the 

determinant of whether to risk capital on the system. Standard practice in OOS testing 

dictates that a system passes cross-validation if OOS performance is >= 50% of IS 

performance. In this case, the majority of the system metrics are above the desired 

threshold yet the information ratio for the OOS segment is much below. Therefore this 

system fails traditional cross-validation due to the unacceptable OOS information ratio. 

5.3 SPP Long-Run Estimate of System Performance 

Next, SPP was performed on the system as specified in section 4.2.1. In contrast to 

the previously described method, SPP uses all available market data and when applied to 

the same system, provides much more information. Table 5 shows the traditional OOS 

results/estimates compared to the respective SPP estimates and to the buy-and-hold 

benchmark (SPY ETF with dividends reinvested). The goal in employing this system is to 



outperform the benchmark and thus the statistical significance of outperformance for 

each system metric (via the equivalent p-value) is also shown.  

The data in table 5 may be used by the trader to decide whether to allocate capital 

to the system. For example, the trader may ask “Is an unbiased estimate of realizing a 

8.94% CAR sufficient reward to compensate for the risk of a -24.22% drawdown and an 

annualized 15.61% standard deviation? Is a p-value of 0.10 for CAR significant enough 

to be confident in outperforming the benchmark?” These questions may be answered via 

the SPP generated sampling distributions.  

Table 5: Long-Run SPP Estimate vs. OOS and Benchmark 
 Compounded 

Annual Return 
Maximum 

Drawdown 
Annualized 
Information 

Ratio 

Annualized 
Standard 
Deviation 

Cross-Validation OOS Estimate 14.47% -9.60% -1.20 11.96% 
SPP Estimate of Long-Run Perf.  8.94% -24.22% 0.06 15.61% 

SPY Benchmark 6.54% -55.05% N/A 24.97% 
Equiv. P-Val for Outperformance 0.10 0.00 0.25 0.00 

The results in table 5 are taken from specific points along the SPP sampling 

distributions. For the four system metrics examined in this example, the CDFs (blue) are 

shown in figure 10 from which the trader can make further probabilistic estimates. The 

system metrics are shown on the y-axis of the charts and the cumulative probabilities on 

the x-axis. 

Additionally, the SPP estimate (red), OOS estimate (green) and benchmark 

(purple) are overlaid onto each CDF chart. The vertical black line highlights the median 

of the sampling distribution. The intersection point of the CDF and the benchmark as 

measured along the x-axis is the value of the equivalent p-value from table 5. 



Figure 10: Long-Run SPP Generated CDFs for Selected System Metrics 

 

5.4 SPP Worst-Case Contingency Analysis for Calendar Year Performance 

The next analysis uses the calendar year as the short-term time period of interest. 

The historical market data were divided into seven blocks, for each of the full calendar 

years present in the data. The process from section 4.2.2 was completed on this data in 

order to evaluate the expected worst-case contingency for any calendar year period.  

Table 6: Calendar Year SPP Worst-Case Contingency vs. OOS and Benchmark 
 Compounded 

Annual 
Return 

Maximum 
Drawdown 

Annualized 
Information 

Ratio 

Annualized 
Standard 
Deviation 

Cross-Validation OOS Estimate 14.47% -9.60% -1.20 11.96% 
Worst-Case Contingency (@SPP 5%) -12.98% -23.95% -1.45 21.67% 

SPY Benchmark Minimum -36.27% -47.04% N/A 10.03% 
SPY Benchmark Maximum 22.8% -7.63% N/A 41.92% 

In this case, the SPP 5th percentile (equivalent to p-value = 0.05) was chosen as the 

worst-case contingency probability. Table 6 shows the same OOS results/estimate from 
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above compared to the SPP worst case contingency and to the range of the buy-and-hold 

benchmark over each of the seven full calendar years in the historical simulation period. 

The trader must decide whether the worst-case contingency for calendar year 

performance shown in table 6 is tolerable in order to achieve the long-run SPP 

performance expectations of the trading system shown in table 5 (previous section). For 

example, the trader must be prepared to accept a 5% probability of realizing a -1.45 

annualized information ratio (significantly underperforming the benchmark) in any given 

calendar year while at the same time, achieving negative absolute returns (-13% CAR).  

Figure 11 shows the CDFs (blue) for the four chosen system metrics as well as the 

SPP estimate (red) and OOS estimate (green) overlaid. The vertical black line highlights 

the 5th percentile of the sampling distribution (worst-case contingency probability chosen) 

and the calendar year range of the benchmark is shown by a purple bar on the y-axis. 

Figure 11: Calendar Year SPP Generated CDFs for Selected System Metrics 
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5.5 Discussion of Results 

The above example showed that, compared to standard OOS cross-validation, SPP 

provides the trader with much more information. SPP creates long-run and short-run 

sampling distributions of system metrics using all available historical market data 

whereas traditional OOS cross-validation provides only a point estimate on a subset of 

historical market data. SPP enables probabilistic decision making whereas traditional 

OOS necessitates a binary pass/fail decision. Thus SPP enables a much deeper 

understanding of how the trading system may perform going forward.  

SPP applied to the relative momentum trading system demonstrates 

outperformance over the buy-and-hold benchmark in the long-run with varying degrees 

of statistical significance for different system metrics. Specifically, an equivalent p-value 

of 0.10 for CAR outperformance is marginally significant. In contrast, an equivalent p-

value of 0.00 for max drawdown outperformance is highly significant and these results 

together indicate that a strength of relative momentum is avoidance of large drawdowns.  

However, the SPP worst-case contingency analysis for calendar year performance 

demonstrated that in order to achieve long-term outperformance, the trader must be 

willing to accept the possibility of significant underperformance in any calendar year. 

With this information, the capital allocation decision may be made probabilistically.  

6. Conclusions 

It is essential for any trader to thoroughly understand what to expect from a trading 

system before allocating capital. Without knowledge of the probable ranges of 



performance expected in the future, the trader or client is prone to abandon a good system 

in the stress of an unexpected drawdown or period of underperformance. Even worse, 

capital may be allocated on the basis of inflated expectations gained from traditional 

evaluation methods when the system should be discarded in the light of the probabilistic 

information that SPP is able to provide. 

The majority of traditional system development approaches provide a single, point 

estimate of performance and/or measure of statistical significance based on a single 

sequence of trades.  With the limited information from such a point estimate, the capital 

allocation decision is difficult at best. In contrast, SPP produces sampling distributions of 

system metrics that allow more realistic contingency planning based on probabilities. 

Ultimately SPP offers a simple, easy to use, yet realistic method to estimate future 

system performance. It is the balance of these three factors that is the true strength of the 

method. Thus SPP is broadly applicable by traders and system developers of varying 

backgrounds and adds value in real-life practice. 

The trading system example showed that SPP provides a clear, balanced picture of 

expected system performance where standard cross-validation did not. The example also 

demonstrated that the relative momentum trading system is likely to outperform the buy-

and-hold benchmark over the long run but that in order to achieve long-term 

outperformance, the trader must be willing to accept the possibility of significant 

underperformance in any given year. With this information, the capital allocation 

decision may be made probabilistically.  
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